Shear Banding in Entangled Polymers: Stress Plateau, Banding Location, and Lever Rule

2021 ◽  
pp. 1517-1523
Author(s):  
Yongjin Ruan ◽  
Yuyuan Lu ◽  
Lijia An ◽  
Zhen-Gang Wang
2010 ◽  
Vol 54 (6) ◽  
pp. 1307-1323 ◽  
Author(s):  
Y. Thomas Hu

Soft Matter ◽  
2015 ◽  
Vol 11 (41) ◽  
pp. 8058-8068 ◽  
Author(s):  
Pouyan E. Boukany ◽  
Shi-Qing Wang ◽  
Sham Ravindranath ◽  
L. James Lee

Recent shear experiments in well-entangled polymer solutions demonstrated that interfacial wall slip is the only source of shear rate loss and there is no evidence of shear banding in the micron scale gap.


2020 ◽  
Vol 30 (1) ◽  
pp. 1-13
Author(s):  
Rehab N. Al-kaby ◽  
Sarah L. Codd ◽  
Joseph D. Seymour ◽  
Jennifer R. Brown

AbstractRheo-NMR velocimetry was used to study shear banding of a 6 wt.% cetylpyridinium chloride (CPCl) worm-like micelle solution under shear startup conditions with and without pre-shear. 1D velocity profiles across the fluid gap of a concentric cylinder Couette shear cell were measured every 1 s following shear startup for four different applied shear rates within the stress plateau. Fitting of the velocity profiles allowed calculation of the shear banding characteristics (shear rates in the high and low shear band, the interface position and apparent slip at the inner rotating wall) as the flow transitioned from transient to steady state regimes. Characteristic timescales to reach steady state were obtained and found to be similar for all shear banding characteristics. Timescales decreased with increasing applied shear rate. Large temporal fluctuations with time were also observed and Fourier transform of the time and velocity autocorrelation functions quantified the fluctuation frequencies. Frequencies corresponded to the elastically driven hydrodynamic instabilities, i.e. vortices, that are known to occur in the unstable high shear band and were dependent upon both applied shear rate and the pre-shear protocol.


2021 ◽  
Author(s):  
◽  
Allan Raudsepp

<p>Shear banding, where a fluid spatially partitions into strain rate or shear bands in steadystate simple shear flow conditions, was first observed in wormlike micelles solutions and has since been observed in many other complex fluids. These solutions have been used extensively to explore the relationship between shear (or stress) banding and microstructure in complex fluids. This relationship is difficult to study because of its dynamic nature and there is still no clear consensus as to how banding relates to microstructural changes in wormlike micelles solutions. In this thesis, the rheology of a number of wormlike micelles solutions is examined using both conventional and novel techniques with the view to developing a better understanding of this relationship. The rheology of three wormlike micelles solutions composed of a surfactant cetylpyridinium chloride (CPCl) and counterion sodium salicylate in water with or without the salt sodium chloride were examined using mechanical rheometry and the rheo-optical techniques: homodyne photo-correlation spectroscopy (PCS), diffusing wave spectroscopy (DWS) and ellipsometry. Rheo-mechanical measurements were largely consistent with the predictions of the reptation-reaction model. While signi cant stress fluctuations were noted in one particular flow geometry, they were generally not observed in most rheomechanical measurements presented here, indicating that these fluctuations are not universal and that they are geometry dependent. Shear induced turbidity was directly observed in the cone-plate and parallel-plate geometries with turbid rings forming in samples that showed a stress plateau. The Poisson-renewal model, which extends the reptationreaction model to include the influence of high frequency modes on the linear rheology, was tested experimentally using mechanical rheometry, DWS microrheology and literature data. In most cases the data fitted the model behaviour quite well, giving a physically reasonable estimate of the average length of the micelles. DWS's spatial sensitivity to shear induced relative motion was then used to probe the flow behaviour of selected wormlike micelles solutions in the cylindrical-Couette, cone-plate and parallel-plate geometries. In the cylindrical-Couette, the  'flow-DWS' measurements were largely consistent with rheo-mechanical measurements and indicated that some wormlike micelles solutions were partitioning into apparently stable high and low strain rate bands in the vicinity of the stress plateau. While measurements in the cone-plate and parallel-plate geometries also suggested shear banding in samples that showed a stress plateau, the interpretation was less clear-cut. Homodyne PCS was combined with ellipsometry to examine the spatial relationship between strain rate and birefringence banding in selected wormlike micelles solutions in a cylindrical-Couette geometry. In contrast to the observations of previous workers, it was found here that the birefringence and strain rate bands did coincide. Furthermore, the high strain rate band was observed to be more turbid than the lower strain rate band suggesting a connection between strain rate, optical anisotropy and turbidity.</p>


2021 ◽  
Author(s):  
◽  
Allan Raudsepp

<p>Shear banding, where a fluid spatially partitions into strain rate or shear bands in steadystate simple shear flow conditions, was first observed in wormlike micelles solutions and has since been observed in many other complex fluids. These solutions have been used extensively to explore the relationship between shear (or stress) banding and microstructure in complex fluids. This relationship is difficult to study because of its dynamic nature and there is still no clear consensus as to how banding relates to microstructural changes in wormlike micelles solutions. In this thesis, the rheology of a number of wormlike micelles solutions is examined using both conventional and novel techniques with the view to developing a better understanding of this relationship. The rheology of three wormlike micelles solutions composed of a surfactant cetylpyridinium chloride (CPCl) and counterion sodium salicylate in water with or without the salt sodium chloride were examined using mechanical rheometry and the rheo-optical techniques: homodyne photo-correlation spectroscopy (PCS), diffusing wave spectroscopy (DWS) and ellipsometry. Rheo-mechanical measurements were largely consistent with the predictions of the reptation-reaction model. While signi cant stress fluctuations were noted in one particular flow geometry, they were generally not observed in most rheomechanical measurements presented here, indicating that these fluctuations are not universal and that they are geometry dependent. Shear induced turbidity was directly observed in the cone-plate and parallel-plate geometries with turbid rings forming in samples that showed a stress plateau. The Poisson-renewal model, which extends the reptationreaction model to include the influence of high frequency modes on the linear rheology, was tested experimentally using mechanical rheometry, DWS microrheology and literature data. In most cases the data fitted the model behaviour quite well, giving a physically reasonable estimate of the average length of the micelles. DWS's spatial sensitivity to shear induced relative motion was then used to probe the flow behaviour of selected wormlike micelles solutions in the cylindrical-Couette, cone-plate and parallel-plate geometries. In the cylindrical-Couette, the  'flow-DWS' measurements were largely consistent with rheo-mechanical measurements and indicated that some wormlike micelles solutions were partitioning into apparently stable high and low strain rate bands in the vicinity of the stress plateau. While measurements in the cone-plate and parallel-plate geometries also suggested shear banding in samples that showed a stress plateau, the interpretation was less clear-cut. Homodyne PCS was combined with ellipsometry to examine the spatial relationship between strain rate and birefringence banding in selected wormlike micelles solutions in a cylindrical-Couette geometry. In contrast to the observations of previous workers, it was found here that the birefringence and strain rate bands did coincide. Furthermore, the high strain rate band was observed to be more turbid than the lower strain rate band suggesting a connection between strain rate, optical anisotropy and turbidity.</p>


2011 ◽  
Vol 55 (5) ◽  
pp. 1007-1032 ◽  
Author(s):  
J. M. Adams ◽  
S. M. Fielding ◽  
P. D. Olmsted

2018 ◽  
Vol 3 (9) ◽  
Author(s):  
Yiran Zhang ◽  
Hadi Mohammadigoushki ◽  
Margaret Y. Hwang ◽  
Susan J. Muller

Sign in / Sign up

Export Citation Format

Share Document