stress plateau
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Parmo Parmo ◽  
Jean-Luc Hanus ◽  
Naima Belayachi ◽  
Patrice Bailly

The aim of this study was to determine the compressive mechanical properties and the energy absorption characteristics of a bio-composite material based on lime, wheat straw, and additives (protein and entraining agent). The selected samples with fiber to binder ratio of 30% were subjected to compression tests at different strain rates (1 mm/min, 10 mm/min, and 100 mm/min), in the perpendicular and parallel directions to fiber orientation. Image analysis supported with Digital Image Correlation (DIC) method is performed to follow longitudinal and lateral deformations, thus making it possible to evaluate elastic properties. The results show that the highest density and compressive strength in the parallel direction are ~349 kg/m3 and ~0.101 MPa, respectively. The perpendicular specimens at 100 mm/min of speed test showed the highest values of densification strain, stress plateau, energy efficiency, and absorbed-energy of 47.27%, 0.32 MPa, 16.98 %, and 13.84 kJ/m2, respectively. The values of Young’s modulus identified with DIC are significantly different from those determined by the slope of the linear part of the stress-strain curve. A slight influence of strain rate on mechanical properties is observed.


2021 ◽  
pp. 1517-1523
Author(s):  
Yongjin Ruan ◽  
Yuyuan Lu ◽  
Lijia An ◽  
Zhen-Gang Wang

2021 ◽  
Author(s):  
◽  
Allan Raudsepp

<p>Shear banding, where a fluid spatially partitions into strain rate or shear bands in steadystate simple shear flow conditions, was first observed in wormlike micelles solutions and has since been observed in many other complex fluids. These solutions have been used extensively to explore the relationship between shear (or stress) banding and microstructure in complex fluids. This relationship is difficult to study because of its dynamic nature and there is still no clear consensus as to how banding relates to microstructural changes in wormlike micelles solutions. In this thesis, the rheology of a number of wormlike micelles solutions is examined using both conventional and novel techniques with the view to developing a better understanding of this relationship. The rheology of three wormlike micelles solutions composed of a surfactant cetylpyridinium chloride (CPCl) and counterion sodium salicylate in water with or without the salt sodium chloride were examined using mechanical rheometry and the rheo-optical techniques: homodyne photo-correlation spectroscopy (PCS), diffusing wave spectroscopy (DWS) and ellipsometry. Rheo-mechanical measurements were largely consistent with the predictions of the reptation-reaction model. While signi cant stress fluctuations were noted in one particular flow geometry, they were generally not observed in most rheomechanical measurements presented here, indicating that these fluctuations are not universal and that they are geometry dependent. Shear induced turbidity was directly observed in the cone-plate and parallel-plate geometries with turbid rings forming in samples that showed a stress plateau. The Poisson-renewal model, which extends the reptationreaction model to include the influence of high frequency modes on the linear rheology, was tested experimentally using mechanical rheometry, DWS microrheology and literature data. In most cases the data fitted the model behaviour quite well, giving a physically reasonable estimate of the average length of the micelles. DWS's spatial sensitivity to shear induced relative motion was then used to probe the flow behaviour of selected wormlike micelles solutions in the cylindrical-Couette, cone-plate and parallel-plate geometries. In the cylindrical-Couette, the  'flow-DWS' measurements were largely consistent with rheo-mechanical measurements and indicated that some wormlike micelles solutions were partitioning into apparently stable high and low strain rate bands in the vicinity of the stress plateau. While measurements in the cone-plate and parallel-plate geometries also suggested shear banding in samples that showed a stress plateau, the interpretation was less clear-cut. Homodyne PCS was combined with ellipsometry to examine the spatial relationship between strain rate and birefringence banding in selected wormlike micelles solutions in a cylindrical-Couette geometry. In contrast to the observations of previous workers, it was found here that the birefringence and strain rate bands did coincide. Furthermore, the high strain rate band was observed to be more turbid than the lower strain rate band suggesting a connection between strain rate, optical anisotropy and turbidity.</p>


2021 ◽  
Author(s):  
◽  
Allan Raudsepp

<p>Shear banding, where a fluid spatially partitions into strain rate or shear bands in steadystate simple shear flow conditions, was first observed in wormlike micelles solutions and has since been observed in many other complex fluids. These solutions have been used extensively to explore the relationship between shear (or stress) banding and microstructure in complex fluids. This relationship is difficult to study because of its dynamic nature and there is still no clear consensus as to how banding relates to microstructural changes in wormlike micelles solutions. In this thesis, the rheology of a number of wormlike micelles solutions is examined using both conventional and novel techniques with the view to developing a better understanding of this relationship. The rheology of three wormlike micelles solutions composed of a surfactant cetylpyridinium chloride (CPCl) and counterion sodium salicylate in water with or without the salt sodium chloride were examined using mechanical rheometry and the rheo-optical techniques: homodyne photo-correlation spectroscopy (PCS), diffusing wave spectroscopy (DWS) and ellipsometry. Rheo-mechanical measurements were largely consistent with the predictions of the reptation-reaction model. While signi cant stress fluctuations were noted in one particular flow geometry, they were generally not observed in most rheomechanical measurements presented here, indicating that these fluctuations are not universal and that they are geometry dependent. Shear induced turbidity was directly observed in the cone-plate and parallel-plate geometries with turbid rings forming in samples that showed a stress plateau. The Poisson-renewal model, which extends the reptationreaction model to include the influence of high frequency modes on the linear rheology, was tested experimentally using mechanical rheometry, DWS microrheology and literature data. In most cases the data fitted the model behaviour quite well, giving a physically reasonable estimate of the average length of the micelles. DWS's spatial sensitivity to shear induced relative motion was then used to probe the flow behaviour of selected wormlike micelles solutions in the cylindrical-Couette, cone-plate and parallel-plate geometries. In the cylindrical-Couette, the  'flow-DWS' measurements were largely consistent with rheo-mechanical measurements and indicated that some wormlike micelles solutions were partitioning into apparently stable high and low strain rate bands in the vicinity of the stress plateau. While measurements in the cone-plate and parallel-plate geometries also suggested shear banding in samples that showed a stress plateau, the interpretation was less clear-cut. Homodyne PCS was combined with ellipsometry to examine the spatial relationship between strain rate and birefringence banding in selected wormlike micelles solutions in a cylindrical-Couette geometry. In contrast to the observations of previous workers, it was found here that the birefringence and strain rate bands did coincide. Furthermore, the high strain rate band was observed to be more turbid than the lower strain rate band suggesting a connection between strain rate, optical anisotropy and turbidity.</p>


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6262
Author(s):  
Minting Zhong ◽  
Wei Zhou ◽  
Huifeng Xi ◽  
Yingjing Liang ◽  
Zhigang Wu

This paper investigates the deformation mechanism and energy absorption behaviour of 316 L triply periodic minimal surface (TPMS) structures with uniform and graded wall thicknesses fabricated by the selective laser melting technique. The uniform P-surface TPMS structure presents a single-level stress plateau for energy absorption and a localized diagonal shear cell failure. A graded strategy was employed to break such localized geometrical deformation to improve the overall energy absorption and to provide a double-level function. Two segments with different wall thicknesses separated by a barrier layer were designed along the compression direction while keeping the same relative density as the uniform structure. The results show that the crushing of the cells of the graded P-surface TPMS structure occurs first within the thin segment and then propagates to the thick segment. The stress–strain response shows apparent double stress plateaus. The stress level and length of each plateau can be adjusted by changing the wall thickness and position of the barrier layer between the two segments. The total energy absorption of the gradient TPMS structure was also found slightly higher than that of the uniform TPMS counterparts. The gradient design of TPMS structures may find applications where the energy absorption requires a double-level feature or a warning function.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3122
Author(s):  
Kang-Wei Goo ◽  
Wan-Ting Chiu ◽  
Ayano Toriyabe ◽  
Masahiro Homma ◽  
Akira Umise ◽  
...  

To enhance the mechanical properties (e.g., strength and elongation) of the face-centered cubic (fcc) α-phase in the Au-Cu-Al system, this study focused on the introduction of the martensite phase (doubled B19 (DB19) crystal structure of Au2CuAl) via the manipulation of alloy compositions. Fundamental evaluations, such as microstructure observations, phase identifications, thermal analysis, tensile behavior examinations, and reflectance analysis, have been conducted. The presence of fcc annealing twins was observed in both the optical microscope (OM) and the scanning electron microscope (SEM) images. Both strength and elongation of the alloys were greatly promoted while the DB19 martensite phase was introduced into the alloys. Amongst all the prepared specimens, the 47Au41Cu12Al and the 44Au44Cu12Al alloys performed the optimized mechanical properties. The enhancement of strength and ductility in these two alloys was achieved while the stress plateau was observed during the tensile deformation. A plot of the ultimate tensile strength (UTS) against fracture strain was constructed to illustrate the effects of the introduction of the DB19 martensite phase on the mechanical properties of the alloys. Regardless of the manipulation of the alloy compositions and the introduction of the DB19 martensite phase, the reflectance stayed almost identical to pure Au.


Author(s):  
Kang Wei Goo ◽  
Wan–Ting Chiu ◽  
Ayano Toriyabe ◽  
Masahiro Homma ◽  
Akira Umise ◽  
...  

To enhance the mechanical properties (i.e. strength and elongation) of the face-centered cubic (fcc) &alpha;-phase in the Au-Cu-Al system, this study focused on the introduction of the martensite phase (doubled B19 (DB19) crystal structure of Au2CuAl) via the manipulation of alloy compositions. Fundamental evaluations, such as microstructure observations, phase identifications, thermal analysis, tensile behavior examinations, and reflectance analysis have been conducted. The presence of fcc annealing twins was both observed in the optical microscope (OM) and the scanning electron microscope (SEM) images. Both the strength and elongation of the alloys were greatly promoted while the DB19 martensite phase was introduced into the alloys. Amongst all the prepared specimens, the 47Au41Cu12Al and the 44Au44Cu12Al alloys performed the optimized mechanical properties. The enhancement of strength and ductility in these 2 alloys was achieved while the stress plateau was observed during the tensile deformation. A plot of the ultimate tensile strength (UTS) against fracture strain was constructed to illustrate the effects of the introduction of the DB19 martensite phase on the mechanical properties of the alloys. Regardless of the manipulation of the alloy compositions and the introduction of the DB19 martensite phase, the reflectance stayed almost identical to pure Au.


2021 ◽  
pp. 002199832110095
Author(s):  
Youdong Xing ◽  
Siyi Yang ◽  
Zhongfang Li ◽  
Wan Ma ◽  
Yukun An

A porous material –Bi-directional Trapezoid Honeycomb (BDTH) which is different from the traditional honeycomb structure, has same energy absorption properties in the Y and Z directions was studied. The structural parameters (cell size, cell thickness) have a great influence on the compression performance. 3 kinds of cell size ( a) and 4 kinds of cell thickness ( t0) totally 7 kinds of BDTH were manufactured. The quasi-static compression test was carried out with experiment and numerical simulation, and the results were obtained. The effects of material deformation modes and energy absorption are analyzed. Next, based on Gibson-Ashby theory, the relationship between density, initial peak stress, plateau stress, densification strain and the ratio of t0/a were deduced.


2021 ◽  
Vol 8 (1) ◽  
pp. 318-326
Author(s):  
Olga Mareeva ◽  
Vladimir Ermilov ◽  
Vera Snezhko ◽  
Dmitrii Benin ◽  
Alexander Bakshtanin

Abstract This paper is an experimental study of the quasi-static mechanical compressive properties of the reinforced closed-cell aluminum alloy foams with different cell orientations at different strain rates. The reinforced foam samples were obtained via the powder metallurgical route. The results of the compression tests revealed that the deformation behavior and mechanical properties of foamed aluminum composites are highly dependent on the orientation of the reinforcing mesh. Differences in the deformation behavior of foams appear to be influenced by the mechanical properties of the matrix material, by foam deformation mechanisms, and by the mechanical properties of the reinforcement. The yield stress, plateau stress, densification stress, and energy absorption capacity of unreinforced foam samples improved linearly with increasing strain rate due to dynamic recrystallization and softening of the foam matrix material. The reinforced foam samples exhibit nonlinear deformation behavior. It was also found that the mechanical properties reduction of transverse reinforced foams was slightly lower compared to foams with longitudinal reinforcement at varying strain rates because of the large contribution of the mechanical properties of the reinforcement. The results of the present study can be employed to modelling and obtain impact-resistant fillers for complex structures in transport construction.


Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3128-3136
Author(s):  
Suzuka Okamoto ◽  
Shinichi Sakurai ◽  
Kenji Urayama

Stretching angle for a main-chain liquid crystal elastomer has pronounced effects on the width of the stress plateau as well as the ultimate elongation, while it has no effect on the plateau height.


Sign in / Sign up

Export Citation Format

Share Document