Influence of Composition Fluctuations on the Linear Viscoelastic Properties of Symmetric Diblock Copolymers near the Order–Disorder Transition

2015 ◽  
Vol 4 (2) ◽  
pp. 260-265 ◽  
Author(s):  
Robert J. Hickey ◽  
Timothy M. Gillard ◽  
Timothy P. Lodge ◽  
Frank S. Bates
2020 ◽  
Vol 35 (5) ◽  
pp. 458-470
Author(s):  
S. Gopi ◽  
B. A. Ramsay ◽  
J. A. Ramsay ◽  
M. Kontopoulou

Abstract Blends of polycaprolactone (PCL) and poly(3-hydroxyoctanoate) P(3HO) were prepared by melt compounding. These immiscible blends exhibited droplet-matrix morphology at compositions up to 30 wt% P(3HO). Even though the addition of amorphous P(3HO) decreased the crystallinity of PCL, the crystallization temperature of the blends increased by 6 to 7 8C. Blends containing up to 30 wt% P(3HO) had higher crystallization rates, and lower crystallization half-times compared to neat PCL. The viscosity of PCL decreased upon addition of P(3HO), making the blends suitable for processing using a 3D bioplotter. Compositions with 10 to 30 wt% P(3HO) were ideal for processing, because of their improved crystallization kinetics, reduced stickiness and good flow properties. Estimation of the interfacial tension by fitting the Palierne model to the linear viscoelastic properties of the blends revealed good compatibility, which gave rise to synergistic effects in the thermal and mechanical properties. The fibres prepared by 3D bioplotting maintained droplet matrix morphology, with finer particle size than the original compounded material. In addition to favourable viscosity and thermal properties, the extruded fibres containing 30 wt% P(3HO) had comparable modulus to the neat PCL, while exhibiting good ductility. These blends may be suitable alternatives to PCL for biomedical applications, because they provide a range of crystallinities, crystallization rates and viscosities.


2005 ◽  
Vol 37 (12) ◽  
pp. 894-899 ◽  
Author(s):  
Yoshiaki Takahashi ◽  
Masahiro Noda ◽  
Shinichi Kitade ◽  
Kouki Matsuoka ◽  
Yushu Matsushita ◽  
...  

2021 ◽  
Author(s):  
Jacob Ishibashi ◽  
Ian Pierce ◽  
Alice Chang ◽  
Aristotelis Zografos ◽  
Bassil El-Zaatari ◽  
...  

<p>The composition of low-T<sub>g</sub> <i>n</i>-butylacrylate-<i>block</i>-(acetoxyaceto)ethyl acrylate block polymers is investigated as a strategy to tune the properties of dynamically cross-linked vinylogous urethane vitrimers. As the proportion of the cross-linkable block is increased, the thermorheological properties, structure, and stress relaxation evolve in ways that cannot be explained by increasing cross-link density alone. Evidence is presented that network connectivity defects such as loops and dangling ends are increased by microphase separation. The thermomechanical and viscoelastic properties of block copolymer-derived vitrimers arise from the subtle interplay of microphase separation and network defects.</p><div><br></div><p></p>


Sign in / Sign up

Export Citation Format

Share Document