Robust Quantum Oscillation of Dirac Fermions in a Single-Defect Resonant Transistor

ACS Nano ◽  
2021 ◽  
Author(s):  
Shoujun Zheng ◽  
Yanggeun Joo ◽  
Mali Zhao ◽  
Kyungrok Kang ◽  
Kenji Watanabe ◽  
...  
2017 ◽  
Vol 114 (10) ◽  
pp. 2468-2473 ◽  
Author(s):  
Ratnadwip Singha ◽  
Arnab Kumar Pariari ◽  
Biswarup Satpati ◽  
Prabhat Mandal

Whereas the discovery of Dirac- and Weyl-type excitations in electronic systems is a major breakthrough in recent condensed matter physics, finding appropriate materials for fundamental physics and technological applications is an experimental challenge. In all of the reported materials, linear dispersion survives only up to a few hundred millielectronvolts from the Dirac or Weyl nodes. On the other hand, real materials are subject to uncontrolled doping during preparation and thermal effect near room temperature can hinder the rich physics. In ZrSiS, angle-resolved photoemission spectroscopy measurements have shown an unusually robust linear dispersion (up to∼2 eV) with multiple nondegenerate Dirac nodes. In this context, we present the magnetotransport study on ZrSiS crystal, which represents a large family of materials (WHMwithW= Zr, Hf;H= Si, Ge, Sn;M= O, S, Se, Te) with identical band topology. Along with extremely large and nonsaturating magnetoresistance (MR),∼1.4×105% at 2 K and 9 T, it shows strong anisotropy, depending on the direction of the magnetic field. Quantum oscillation and Hall effect measurements have revealed large hole and small electron Fermi pockets. A nontrivialπBerry phase confirms the Dirac fermionic nature for both types of charge carriers. The long-sought relativistic phenomenon of massless Dirac fermions, known as the Adler–Bell–Jackiw chiral anomaly, has also been observed.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Taichi Terashima ◽  
Hishiro T. Hirose ◽  
David Graf ◽  
Yonghui Ma ◽  
Gang Mu ◽  
...  

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Amin Aboubrahim ◽  
Michael Klasen ◽  
Pran Nath

Abstract We present a particle physics model to explain the observed enhancement in the Xenon-1T data at an electron recoil energy of 2.5 keV. The model is based on a U(1) extension of the Standard Model where the dark sector consists of two essentially mass degenerate Dirac fermions in the sub-GeV region with a small mass splitting interacting with a dark photon. The dark photon is unstable and decays before the big bang nucleosynthesis, which leads to the dark matter constituted of two essentially mass degenerate Dirac fermions. The Xenon-1T excess is computed via the inelastic exothermic scattering of the heavier dark fermion from a bound electron in xenon to the lighter dark fermion producing the observed excess events in the recoil electron energy. The model can be tested with further data from Xenon-1T and in future experiments such as SuperCDMS.


1994 ◽  
Vol 49 (4) ◽  
pp. 2959-2962 ◽  
Author(s):  
Kookjin Chun ◽  
Norman O. Birge

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Libo Zhang ◽  
Zhiqingzi Chen ◽  
Kaixuan Zhang ◽  
Lin Wang ◽  
Huang Xu ◽  
...  

AbstractThe advent of topological semimetals enables the exploitation of symmetry-protected topological phenomena and quantized transport. Here, we present homogeneous rectifiers, converting high-frequency electromagnetic energy into direct current, based on low-energy Dirac fermions of topological semimetal-NiTe2, with state-of-the-art efficiency already in the first implementation. Explicitly, these devices display room-temperature photosensitivity as high as 251 mA W−1 at 0.3 THz in an unbiased mode, with a photocurrent anisotropy ratio of 22, originating from the interplay between the spin-polarized surface and bulk states. Device performances in terms of broadband operation, high dynamic range, as well as their high sensitivity, validate the immense potential and unique advantages associated to the control of nonequilibrium gapless topological states via built-in electric field, electromagnetic polarization and symmetry breaking in topological semimetals. These findings pave the way for the exploitation of topological phase of matter for high-frequency operations in polarization-sensitive sensing, communications and imaging.


2021 ◽  
Vol 133 ◽  
pp. 105936
Author(s):  
E. Tiras ◽  
S. Ardali ◽  
H.A. Firat ◽  
E. Arslan ◽  
E. Ozbay

2020 ◽  
Vol 101 (8) ◽  
Author(s):  
G. Lemut ◽  
M. J. Pacholski ◽  
O. Ovdat ◽  
A. Grabsch ◽  
J. Tworzydło ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document