scholarly journals Controlling Self-Assembly Kinetics of DNA-Functionalized Liposomes Using Toehold Exchange Mechanism

ACS Nano ◽  
2016 ◽  
Vol 10 (2) ◽  
pp. 2392-2398 ◽  
Author(s):  
Lucia Parolini ◽  
Jurij Kotar ◽  
Lorenzo Di Michele ◽  
Bortolo M. Mognetti
Langmuir ◽  
2012 ◽  
Vol 28 (21) ◽  
pp. 7962-7966 ◽  
Author(s):  
Jianhao Wang ◽  
Pengju Jiang ◽  
Zuoyan Han ◽  
Lin Qiu ◽  
Cheli Wang ◽  
...  

2018 ◽  
Vol 112 ◽  
pp. 1183-1190 ◽  
Author(s):  
Daniela Giacomazza ◽  
Donatella Bulone ◽  
Pier Luigi San Biagio ◽  
Rosamaria Marino ◽  
Romano Lapasin

2017 ◽  
Vol 50 (4) ◽  
pp. 1657-1665 ◽  
Author(s):  
Cuiyun Zhang ◽  
You Fan ◽  
Yunyi Zhang ◽  
Cong Yu ◽  
Hongfei Li ◽  
...  

2021 ◽  
Author(s):  
Arabinda Behera ◽  
Oshin Sharma ◽  
Debjani Paul ◽  
Anirban Sain

Molecular self-assembly plays vital role in various biological functions. However, when aberrant molecules self-assemble to form large aggregates, it can give rise to various diseases. For example, the sickle cell disease and Alzheimer’s disease are caused by self-assembled hemoglobin fibers and amyloid plaques, respectively. Here we study the assembly kinetics of such fibers using kinetic Monte-Carlo simulation. We focus on the initial lag time of these highly stochastic processes, during which self-assembly is very slow. The lag time distributions turn out to be similar for two very different regimes of polymerization, namely, a) when polymerization is slow and depolymerization is fast, and b) the opposite case, when polymerization is fast and depolymerization is slow. Using temperature dependent on- and off-rates for hemoglobin fiber growth, reported in recent in-vitro experiments, we show that the mean lag time can exhibit non-monotonic behaviour with respect to change of temperature.


2015 ◽  
Vol 7 (46) ◽  
pp. 25843-25850 ◽  
Author(s):  
Woon Ik Park ◽  
Young Joong Choi ◽  
Je Moon Yun ◽  
Suck Won Hong ◽  
Yeon Sik Jung ◽  
...  

2016 ◽  
Vol 13 (114) ◽  
pp. 20150762 ◽  
Author(s):  
A. A. Lee ◽  
M. J. Senior ◽  
M. I. Wallace ◽  
T. E. Woolley ◽  
I. M. Griffiths

Pore-forming toxins are ubiquitous cytotoxins that are exploited by both bacteria and the immune response of eukaryotes. These toxins kill cells by assembling large multimeric pores on the cell membrane. However, a quantitative understanding of the mechanism and kinetics of this self-assembly process is lacking. We propose an analytically solvable kinetic model for stepwise, reversible oligomerization. In biologically relevant limits, we obtain simple algebraic expressions for the rate of pore formation, as well as for the concentration of pores as a function of time. Quantitative agreement is obtained between our model and time-resolved kinetic experiments of Bacillus thuringiensis Cry1Ac (tetrameric pore), aerolysin, Staphylococcus aureus α -haemolysin (heptameric pores) and Escherichia coli cytolysin A (dodecameric pore). Furthermore, our model explains how rapid self-assembly can take place with low concentrations of oligomeric intermediates, as observed in recent single-molecule fluorescence experiments of α-haemolysin self-assembly. We propose that suppressing the concentration of oligomeric intermediates may be the key to reliable, error-free, self-assembly of pores.


Sign in / Sign up

Export Citation Format

Share Document