Non-Negligible Roles of Pore Size Distribution on Electroosmotic Flow in Nanoporous Materials

ACS Nano ◽  
2019 ◽  
Vol 13 (7) ◽  
pp. 8185-8192 ◽  
Author(s):  
Cheng Lian ◽  
Haiping Su ◽  
Chunzhong Li ◽  
Honglai Liu ◽  
Jianzhong Wu
2008 ◽  
Vol 607 ◽  
pp. 39-41
Author(s):  
Jerzy Kansy ◽  
Radosław Zaleski

A new method of analysis of PALS spectra of porous materials is proposed. The model considers both the thermalization process of positronium inside the pores and the pore size distribution. The new model is fitted to spectra of mesoporous silica MCM-41 and MSF. The resulting parameters are compared with parameters obtained from fitting the “conventional” models, i.e. a sum of exponential components with discrete or/and distributed lifetimes.


2011 ◽  
Vol 32 (3) ◽  
pp. 195-201 ◽  
Author(s):  
Jerzy Łukaszewicz ◽  
Krzysztof Zieliński

Durability and narrow pore size distribution (PSD) of carbons fabricated from Salix viminalis wood Microporous carbon molecular sieves of extremely narrow pore size distribution were obtained by carbonization of a novel raw material (Salix viminalis). The precursor is inexpensive and widely accessible. The pore capacity and specific surface area are upgradable by H3PO4 treatment without significant change of narrowed PSD. The dominating pore size indicates that these molecular sieves are a potential competitor to other nanoporous materials such as opened and purified carbon nanotubes.


2019 ◽  
Author(s):  
Paul Iacomi ◽  
Philip L. Llewellyn

Material characterisation through adsorption is a widely-used laboratory technique. The isotherms obtained through volumetric or gravimetric experiments impart insight through their features but can also be analysed to determine material characteristics such as specific surface area, pore size distribution, surface energetics, or used for predicting mixture adsorption. The pyGAPS (python General Adsorption Processing Suite) framework was developed to address the need for high-throughput processing of such adsorption data, independent of the origin, while also being capable of presenting individual results in a user-friendly manner. It contains many common characterisation methods such as: BET and Langmuir surface area, t and α plots, pore size distribution calculations (BJH, Dollimore-Heal, Horvath-Kawazoe, DFT/NLDFT kernel fitting), isosteric heat calculations, IAST calculations, isotherm modelling and more, as well as the ability to import and store data from Excel, CSV, JSON and sqlite databases. In this work, a description of the capabilities of pyGAPS is presented. The code is then be used in two case studies: a routine characterisation of a UiO-66(Zr) sample and in the processing of an adsorption dataset of a commercial carbon (Takeda 5A) for applications in gas separation.


Sign in / Sign up

Export Citation Format

Share Document