narrow pore size distribution
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 3)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 202
Author(s):  
Antonio J. Salinas ◽  
Pedro Esbrit

Throughout her impressive scientific career, Prof. María Vallet-Regí opened various research lines aimed at designing new bioceramics, including mesoporous bioactive glasses for bone tissue engineering applications. These bioactive glasses can be considered a spin-off of silica mesoporous materials because they are designed with a similar technical approach. Mesoporous glasses in addition to SiO2 contain significant amounts of other oxides, particularly CaO and P2O5 and therefore, they exhibit quite different properties and clinical applications than mesoporous silica compounds. Both materials exhibit ordered mesoporous structures with a very narrow pore size distribution that are achieved by using surfactants during their synthesis. The characteristics of mesoporous glasses made them suitable to be enriched with various osteogenic agents, namely inorganic ions and biopeptides as well as mesenchymal cells. In the present review, we summarize the evolution of mesoporous bioactive glasses research for bone repair, with a special highlight on the impact of Prof. María Vallet-Regí´s contribution to the field.


2021 ◽  
Vol 153 ◽  
pp. 106206
Author(s):  
Kotchaphan Kanjana ◽  
Phimphaka Harding ◽  
Tanagorn Kwamman ◽  
Wilasinee Kingkam ◽  
Threeraphat Chutimasakul

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 637
Author(s):  
Ilya V. Korolkov ◽  
Asiya R. Narmukhamedova ◽  
Galina B. Melnikova ◽  
Indira B. Muslimova ◽  
Arman B. Yeszhanov ◽  
...  

The paper describes the separation of an oil–water emulsion by filtration using poly(ethylene terephthalate) track-etched membranes (PET TeMs) with regular pore geometry and narrow pore size distribution. PET TeMs were modified with trichloro(octyl)silane to increase their hydrophobic properties. Conditions for the modification of PET TeMs with trichloro(octyl)silane were investigated. The results of changes in the pore diameters and the contact angle depend on the concentration of trichloro(octyl)silane and the soaking time are presented. The obtained samples were characterized by FTIR, AFM, SEM-EDX and gas-permeability test. Chloroform–water and cetane–water emulsions have been used as a test liquid for oil–water separation.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2520
Author(s):  
Arman B. Yeszhanov ◽  
Ilya V. Korolkov ◽  
Saule S. Dosmagambetova ◽  
Maxim V. Zdorovets ◽  
Olgun Güven

Membrane distillation (MD) is a rapidly developing field of research and finds applications in desalination of water, purification from nonvolatile substances, and concentration of various solutions. This review presents data from recent studies on the MD process, MD configuration, the type of membranes and membrane hydrophobization. Particular importance has been placed on the methods of hydrophobization and the use of track-etched membranes (TeMs) in the MD process. Hydrophobic TeMs based on poly(ethylene terephthalate) (PET), poly(vinylidene fluoride) (PVDF) and polycarbonate (PC) have been applied in the purification of water from salts and pesticides, as well as in the concentration of low-level liquid radioactive waste (LLLRW). Such membranes are characterized by a narrow pore size distribution, precise values of the number of pores per unit area and narrow thickness. These properties of membranes allow them to be used for more accurate water purification and as model membranes used to test theoretical models (for instance LEP prediction).


BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1628-1641
Author(s):  
Jianxiang Liu ◽  
Yuhan Lu ◽  
Ruiling Wang ◽  
Yuanbo Huang ◽  
Can Liu ◽  
...  

The promotional effect of Zn was investigated relative to the calcining activation of HZSM-5. It was found that the lignin separated from walnut shell could be liquefied into small molecular ethers such as anisole by the promotional effect of the modified catalyst. Experimental results showed that, after the loading of Zn, the HZSM-5 catalyst retained its original crystal structure, which exhibited good metal dispersion. Besides, due to the existence of two interactions respectively of Zn with Al and Zn with a Brønsted-Lowry acid on the Zn/HZSM-5 catalyst surface, the remaining catalyst intergranular distance increased, particularly for the 2% Zn/HZSM-5 catalyst. The inside of the catalyst was in a state of spherical particle aggregation with a narrow pore size distribution and uniform particle size. The peak intensity of the Si-O stretching vibration was affected by the content of Zn, which was least affected for the 2% Zn/HZSM-5 catalyst. The signal peak of this small molecule ether was not found in the absence of the metal ions, and the catalytic effect of 2% Zn/HZSM-5 was more distinct. Calculated by the mass difference method, the yield of the liquid via the 2% Zn/HZSM-5 catalyst was 59.8%, including phenol and small molecule ethers represented by anisole.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2053 ◽  
Author(s):  
Natalia Gavrilova ◽  
Victor Dyakonov ◽  
Maria Myachina ◽  
Victor Nazarov ◽  
Valery Skudin

In recent years, the development of methods for the synthesis of Mo2C for catalytic application has become especially important. In this work a series of Mo2C samples was synthesized by thermal decomposition of molybdenum blue xerogels obtained using ascorbic acid. The influence of the molar ratio reducing agent/Mo [R]/[Mo] on morphology, phase composition and characteristics of the porous structure of Mo2C has been established. The developed synthesis method allows the synthesis to be carried out in an inert atmosphere and does not require a carburization step. The resulting molybdenum carbide has a mesoporous structure with a narrow pore size distribution and a predominant pore size of 4 nm.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1734 ◽  
Author(s):  
Dongge Ma ◽  
Jundan Li ◽  
Anan Liu ◽  
Chuncheng Chen

Carbon gels are a kind of porous organic polymer, which play pivotal roles in electrode, supercapacitor, hydrogen storage, and catalysis. Carbon gels are commonly prepared by the condensation of resorcinol and formaldehyde. The as-prepared polymers are further aged and sintered at a high temperature in an inert atmosphere to form cross-linked and intertwined porous structures. Owing to its large specific area and narrow pore size distribution, this kind of material is very appropriate for mass transfer, substrate absorption, and product desorption from the pores. In recent years, carbon gels have been discovered to function as effective hybrid materials with TiO2 for photocatalytic applications. They could act as efficient deep-traps for photo-induced holes, which decreases the recombination probability of photo-induced carriers and lengthens their lifetime. In this mini-review, we will discuss the state-of-the-art paragon examples of carbon gels/TiO2 composite materials applied in photo(electro)catalysis. The major challenges and gaps of its application in this field will also be emphasized.


Sign in / Sign up

Export Citation Format

Share Document