adsorption processing
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 10)

H-INDEX

3
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5440
Author(s):  
Francisco J. Alguacil ◽  
Félix A. López

Even in the first quarter of the XXI century, the presence of organic dyes in wastewaters was a normal occurrence in a series of countries. As these compounds are toxic, their removal from these waters is a necessity. Among the separation technologies, adsorption processing appeared as one of the most widely used to reach this goal. The present work reviewed the most recent approaches (first half of the 2021 year) regarding the use of a variety of adsorbents in the removal of a variety of organic dyes of different natures.


Author(s):  
Francisco J. Alguacil ◽  
Félix A. López

Even in the first quarter of XXI century, the presence of organic dyes in wastewaters is a normal occurrence in a series of countries, and being these compounds toxics, their removal from these waters is of a necessity. Among the separation technologies, adsorption processing appeared as one of the most widely used to reach this goal. The present work reviewed the most recent approaches (first half of 2021 year) about the use of a variety of adsorbents on the removal of, also, a variety of organic dyes of different nature.


2020 ◽  
Vol 22 (4) ◽  
pp. 269
Author(s):  
Ye.K. Ongarbayev

The high content of metal- and sulfur-containing compounds in the composition of heavy oil residues leads to negative impacts during their processing, the use of catalysts and equipment. To solve this problem, various methods of demetallization and deasphalting are proposed. The article provides information on various methods of demetallization, desulfurization and coking of heavy oil residues. The disadvantages of the considered methods are shown, and a thermal adsorption processing method is proposed as an effective method of demetallization and desulfurization. The results of demetallization and desulfurization of vacuum residue from the Pavlodar Petrochemical Plant (Kazakhstan) using various adsorbents: serpentine, zeolite modified with wollastonite and coke, kaolin clay with coke are presented. The maximum degree of demetallization of 81‒94% with respect to vanadium and nickel is observed when using kaolin clay modified with coke as an adsorbent and during the process at 400 °C for 4 h. The maximum degree of desulfurization 39.6% is observed during the process using zeolite modified with wollastonite and coke at 400 °C for 3 h. After demetallization and desulfurization, the vacuum residue was subjected to a coking process to produce coke with improved performance and yield. Coke with good yield (32%) and low values of ash and mass fraction of total moisture is obtained by vacuum residue coking after demetallization with kaolin clay modified with coke.


2020 ◽  
Author(s):  
Sudad H Al-Obaidi ◽  
Guliaeva NI

The raw materials of secondary catalytic processes must be prerefined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption (or thermo-contact adsorption) variety. In oil processing, four main processes of thermo-adsorption refining of hydrocarbon residues are used—Asphalt Residual Treating- residues deasphaltizing (ART), Discriminatory Destructive Distillation (3D), developed in the US; Adsorption-Contact Treatment (ACT) and Express Thermo-Contact Cracking (ETCC), developed in Russia. ART and ACT are processes with absorbers of lift-type reactor, while 3D and ETCC processes are with an adsorbing reactor having ultrashort contact time of the raw material with the adsorbent. In all these processes, refining of hydrocarbon residues is achieved by partial thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed, on the surface of the adsorbents, resins, asphaltene and carboids, as well as metal-, sulphur-, and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes (catalytic and hydrogenation cracking, etc.), since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.


2020 ◽  
Author(s):  
Francisco Jose Alguacil ◽  
Felix A. Lopez

The problem of the treatment of contaminated wastewaters is of the upmost worldwide interest. This contamination occurs via the presence of inorganic or organic contaminants of different nature in relation with the industry they come from. In the case of organic dyes, their environmental impact, and thus, their toxicity come from the air (releasing of dust and particulate matter), solid (scrap of textile fabrics, sludges), though the great pollution, caused from dyes, comes from the discharge of untreated effluents into waters, contributing to increase the level of BOD and COD in these liquid streams; this discharge is normally accompanied by water coloration, which low the water quality, and caused a secondary issue in the wastewater treatment. Among separation technologies, adsorption processing is one of the most popular, due to its versatility, easiness of work, and possibility of scaling-up in the eve of the treatment of large wastewater volumes. Within a miriade of potential adsorbents for the removal of organic dyes, this work presented the most recent advances in the topic.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 412 ◽  
Author(s):  
Francisco J. Alguacil ◽  
Félix A. López

Mercury is a toxic metal, thus, it is an element which has more and more restrictions in its uses, but despite the above, the removal of this metal, from whatever the form in which it is encountered (zero valent metal, inorganic, or organic compounds), and from different sources, is of a widespread interest. In the case of Hg(II), or Hg2+, the investigations about the treatment of Hg(II)-bearing liquid effluents (real or in most cases synthetic solutions) appear not to end, and from the various separation technologies, adsorption is the most popular among researchers. In this topic, and in the 2019 year, more than 100 publications had been devoted to this field: Hg(II)-removal-adsorption. This work examined all of them.


Author(s):  
Francisco J. Alguacil ◽  
Félix A. López

Mercury is a toxic metal, thus, it is an element which has more and more restrictions in its uses, but despite the above, the removal of this metal, from whatever the form in which it is encountered (zero valent metal, inorganic or organic compounds), and from different sources, is of a widespread interest. In the case of Hg(II), or Hg2+, the investigations about the treatment of Hg(II)-bearing liquid effluents (real or in most cases synthetic solutions) appear not to end, and from the various separation technologies, adsorption is the most popular among researchers. In this topic, and in the 2019 year, more than 100 publications had been devote to this field: Hg(II)-removal-adsorption. This work examined all of them.


2019 ◽  
Author(s):  
Paul Iacomi ◽  
Philip L. Llewellyn

Material characterisation through adsorption is a widely-used laboratory technique. The isotherms obtained through volumetric or gravimetric experiments impart insight through their features but can also be analysed to determine material characteristics such as specific surface area, pore size distribution, surface energetics, or used for predicting mixture adsorption. The pyGAPS (python General Adsorption Processing Suite) framework was developed to address the need for high-throughput processing of such adsorption data, independent of the origin, while also being capable of presenting individual results in a user-friendly manner. It contains many common characterisation methods such as: BET and Langmuir surface area, t and α plots, pore size distribution calculations (BJH, Dollimore-Heal, Horvath-Kawazoe, DFT/NLDFT kernel fitting), isosteric heat calculations, IAST calculations, isotherm modelling and more, as well as the ability to import and store data from Excel, CSV, JSON and sqlite databases. In this work, a description of the capabilities of pyGAPS is presented. The code is then be used in two case studies: a routine characterisation of a UiO-66(Zr) sample and in the processing of an adsorption dataset of a commercial carbon (Takeda 5A) for applications in gas separation.


2019 ◽  
Author(s):  
Paul Iacomi ◽  
Philip L. Llewellyn

Material characterisation through adsorption is a widely-used laboratory technique. The isotherms obtained through volumetric or gravimetric experiments impart insight through their features but can also be analysed to determine material characteristics such as specific surface area, pore size distribution, surface energetics, or used for predicting mixture adsorption. The pyGAPS (python General Adsorption Processing Suite) framework was developed to address the need for high-throughput processing of such adsorption data, independent of the origin, while also being capable of presenting individual results in a user-friendly manner. It contains many common characterisation methods such as: BET and Langmuir surface area, t and α plots, pore size distribution calculations (BJH, Dollimore-Heal, Horvath-Kawazoe, DFT/NLDFT kernel fitting), isosteric heat calculations, IAST calculations, isotherm modelling and more, as well as the ability to import and store data from Excel, CSV, JSON and sqlite databases. In this work, a description of the capabilities of pyGAPS is presented. The code is then be used in two case studies: a routine characterisation of a UiO-66(Zr) sample and in the processing of an adsorption dataset of a commercial carbon (Takeda 5A) for applications in gas separation.


2019 ◽  
Author(s):  
Paul Iacomi ◽  
Philip L. Llewellyn

Material characterisation through adsorption is a widely-used laboratory technique. The isotherms obtained through volumetric or gravimetric experiments impart insight through their features but can also be analysed to determine material characteristics such as specific surface area, pore size distribution, surface energetics, or used for predicting mixture adsorption. The pyGAPS (python General Adsorption Processing Suite) framework was developed to address the need for high-throughput processing of such adsorption data, independent of the origin, while also being capable of presenting individual results in a user-friendly manner. It contains many common characterisation methods such as: BET and Langmuir surface area, t and α plots, pore size distribution calculations (BJH, Dollimore-Heal, Horvath-Kawazoe, DFT/NLDFT kernel fitting), isosteric heat calculations, IAST calculations, isotherm modelling and more, as well as the ability to import and store data from Excel, CSV, JSON and sqlite databases. In this work, a description of the capabilities of pyGAPS is presented. The code is then be used in two case studies: a routine characterisation of a UiO-66(Zr) sample and in the processing of an adsorption dataset of a commercial carbon (Takeda 5A) for applications in gas separation.


Sign in / Sign up

Export Citation Format

Share Document