scholarly journals Band Structure Engineering and Optical Properties of Pristine and Doped Monoclinic Zirconia (m-ZrO2): Density Functional Theory Theoretical Prospective

ACS Omega ◽  
2021 ◽  
Author(s):  
El-Sayed R. Khattab ◽  
Sayed S. Abd El Rehim ◽  
Walid M. I. Hassan ◽  
Tamer S. El-Shazly
2017 ◽  
Vol 19 (41) ◽  
pp. 28330-28343 ◽  
Author(s):  
Amrita Pal ◽  
Lai Kai Wen ◽  
Chia Yao Jun ◽  
Il Jeon ◽  
Yutaka Matsuo ◽  
...  

Comparative DFT–DFTB study of multiple derivatives of C60 and C70 with different addends, in molecular and solid state.


2014 ◽  
Vol 716-717 ◽  
pp. 20-23
Author(s):  
Min Xu

based on Density Functional Theory, we investigated the optical structures and the electronic properties of Cu doped SnO2with density of 12.5%, including band structure, the density of state (dos), Dielectric function and optical absorption spectrum. The results show that Fermi level access conduction band gradually with the doped density. It has enhanced the electrical and metal property of material. The peaks of reflectivity spectrum and absorption spectrum correspond density of state.


2018 ◽  
Vol 60 (9) ◽  
pp. 1662
Author(s):  
А.С. Шинкоренко ◽  
В.И. Зиненко ◽  
М.С. Павловский

AbstractAb initio calculations of the structural, electronic, and optical properties of the CdB_4O_7 and HgB_4O_7 tetraborate compounds in three structural modifications with the Pbca , Cmcm , and Pmn 2_1 symmetry have been performed in the framework of the density functional theory using the VASP package. The calculations of the electronic band structure showed that these compounds in all the investigated modifications are dielectrics with a band gap of 2–4 eV. The calculation of the structural properties of the tetraborates under pressure showed that the phase transition between the Pbca and Pmn 2_1 structures in cadmium and mercury tetraborates occurs under pressures of 4.8 and 4.7 GPa, respectively.


2019 ◽  
Vol 10 (1) ◽  
pp. 33-41
Author(s):  
T. Abasi ◽  
A. Boochani ◽  
S. R. Masharian

AbstractIn this paper, using the density functional theory framework with the FP-LAPW + lo method by GGA approximation, the electronic and optical properties such as band structure, density of states, dielectric function, energy loss function, absorption and reflection have been investigated for borophene nano-sheet. The optical properties of the borophene have been changed as the incident light direction whereas has the metallic and semiconductor behavior, in the borophene sheet and perpendicular light angles, respectively. Therefore, it can be said that the optical properties of this material are anisotropic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rauf ◽  
Muhammad Adil ◽  
Shabeer Ahmad Mian ◽  
Gul Rahman ◽  
Ejaz Ahmed ◽  
...  

AbstractHematite (Fe2O3) is one of the best candidates for photoelectrochemical water splitting due to its abundance and suitable bandgap. However, its efficiency is mostly impeded due to the intrinsically low conductivity and poor light absorption. In this study, we targeted this intrinsic behavior to investigate the thermodynamic stability, photoconductivity and optical properties of rhodium doped hematite using density functional theory. The calculated formation energy of pristine and rhodium doped hematite was − 4.47 eV and − 5.34 eV respectively, suggesting that the doped material is thermodynamically more stable. The DFT results established that the bandgap of doped hematite narrowed down to the lower edge (1.61 eV) in the visible region which enhanced the optical absorption and photoconductivity of the material. Moreover, doped hematite has the ability to absorb a broad spectrum (250–800) nm. The enhanced optical absorption boosted the photocurrent and incident photon to current efficiency. The calculated results also showed that the incorporation of rhodium in hematite induced a redshift in optical properties.


2021 ◽  
pp. 413061
Author(s):  
Shahran Ahmed ◽  
Sadiq Shahriyar Nishat ◽  
Alamgir Kabir ◽  
A.K.M. Sarwar Hossain Faysal ◽  
Tarique Hasan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document