scholarly journals Influence of Acyl Chain Saturation on the Membrane-Binding Activity of a Short Antimicrobial Peptide

ACS Omega ◽  
2017 ◽  
Vol 2 (11) ◽  
pp. 7482-7492 ◽  
Author(s):  
Daniela Ciumac ◽  
Richard A. Campbell ◽  
Luke A. Clifton ◽  
Hai Xu ◽  
Giovanna Fragneto ◽  
...  
2021 ◽  
Author(s):  
Adam S.B. Jalal ◽  
Ngat T. Tran ◽  
Ling J. Wu ◽  
Karunakaran Ramakrishnan ◽  
Martin Rejzek ◽  
...  

2011 ◽  
Vol 64 (6) ◽  
pp. 798 ◽  
Author(s):  
David I. Fernandez ◽  
Marc-Antoine Sani ◽  
Frances Separovic

The interactions of the antimicrobial peptide, maculatin 1.1 (GLFGVLAKVAAHVVPAIAEHF-NH2) and two analogues, with model phospholipid membranes have been studied using solid-state NMR and circular dichroism spectroscopy. Maculatin 1.1 and the P15G and P15A analogues displayed minimal secondary structure in water, but with zwitterionic dimyristoylphosphatidylcholine (DMPC) vesicles displayed a significant increase in α-helical content. In mixed phospholipid vesicles of DMPC and anionic dimyristoylphosphatidylglycerol (DMPG), each peptide was highly structured with ~80% α-helical content. In DMPC vesicles, the native peptide displayed moderate head group interaction and significant perturbation of the lipid acyl chains. In DMPC/DMPG vesicles, maculatin 1.1 promoted formation of a DMPG-enriched phase and moderately increased disorder towards acyl chain ends of DMPC in the mixed bilayer. Both analogues showed reduced phospholipid head group interactions with DMPC but displayed significant interactions with the mixed lipid system. These effects support the preferential activity of these antimicrobial peptides for bacterial membranes.


2021 ◽  
Author(s):  
Sophie Williams ◽  
Xiulian Yu ◽  
Tao Ni ◽  
Robert Gilbert ◽  
Phillip Stansfeld

Perforin-like proteins (PLPs) play key roles in the mechanisms associated with parasitic disease caused by apicomplexans such as Plasmodium (malaria) and Toxoplasma. The T. gondii PLP1 (TgPLP1) mediates tachyzoite egress from cells, while the five Plasmodium PLPs carry out various roles in the life cycle of the parasite and with respect to the molecular basis of disease. Here we focus on Plasmodium vivax PLP1 and PLP2 (PvPLP1 and PvPLP2) compared to TgPLP1; PvPLP1 is important for invasion of mammalian hosts by the parasite and establishment of a chronic infection, PvPLP2 is important during the symptomatic blood stage of the parasite life cycle. Determination of the crystal structure of the membrane-binding APCβ domain of PvPLP1 reveals notable differences with that of TgPLP1, which are reflected in its inability to bind lipid bilayers in the way that TgPLP1 and PvPLP2 can be shown to. Molecular dynamics simulations combined with site-directed mutagenesis and functional assays allow a dissection of the binding interactions of TgPLP1 and PvPLP2 on lipid bilayers, and reveal a similar tropism for lipids found enriched in the inner leaflet of the mammalian plasma membrane. In addition to this shared mode of membrane binding PvPLP2 displays a secondary synergistic interaction side-on from its principal bilayer interface. This study underlines the substantial differences between the biophysical properties of the APCβ domains of Apicomplexan PLPs, which reflect their significant sequence diversity. Such differences will be important factors in determining the cell targeting and membrane-binding activity of the different proteins, in their different developmental roles within parasite life cycles.


2003 ◽  
Vol 23 (22) ◽  
pp. 8272-8281 ◽  
Author(s):  
Hanna Uvell ◽  
Ylva Engström

ABSTRACT Innate immune reactions are crucial processes of metazoans to protect the organism against overgrowth of faster replicating microorganisms. Drosophila melanogaster is a precious model for genetic and molecular studies of the innate immune system. In response to infection, the concerted action of a battery of antimicrobial peptides ensures efficient killing of the microbes. The induced gene expression relies on translocation of the Drosophila Rel transcription factors Relish, Dif, and Dorsal to the nucleus where they bind to κB-like motifs in the promoters of the inducible genes. We have identified another putative promoter element, called region 1 (R1), in a number of antimicrobial peptide genes. Site-directed mutagenesis of the R1 site diminished Cecropin A1 (CecA1) expression in transgenic Drosophila larvae and flies. Infection of flies induced a nuclear R1-binding activity that was unrelated to the κB-binding activity in the same extracts. Although the R1 motif was required for Rel protein-mediated CecA1 expression in cotransfection experiments, our data argue against it being a direct target for the Drosophila Rel proteins. We propose that the R1 and κB motifs are targets for distinct regulatory complexes that act in concert to promote high levels of antimicrobial peptide gene expression in response to infection.


Food Control ◽  
2009 ◽  
Vol 20 (2) ◽  
pp. 149-156 ◽  
Author(s):  
Ya-Li Tang ◽  
Yong-Hui Shi ◽  
Wei Zhao ◽  
Gang Hao ◽  
Guo-Wei Le

2010 ◽  
Vol 98 (3) ◽  
pp. 85a
Author(s):  
Katherine N. Alfieri ◽  
Heather A. McMahon ◽  
Casey H. Londergan

2017 ◽  
Vol 5 (13) ◽  
pp. 2407-2415 ◽  
Author(s):  
Junjian Chen ◽  
Yuchen Zhu ◽  
Yancheng Song ◽  
Lin Wang ◽  
Jiezhao Zhan ◽  
...  

The designed antimicrobial peptide has surface binding activity onto titanium, gold, polymethyl methacrylate and hydroxyapatite substrates.


1987 ◽  
Vol 105 (4) ◽  
pp. 1741-1751 ◽  
Author(s):  
L J Wuestehube ◽  
E J Luna

F-actin affinity chromatography and immunological techniques are used to identify actin-binding proteins in purified Dictyostelium discoideum plasma membranes. A 17-kD integral glycoprotein (gp17) consistently elutes from F-actin columns as the major actin-binding protein under a variety of experimental conditions. The actin-binding activity of gp17 is identical to that of intact plasma membranes: it resists extraction with 0.1 N NaOH, 1 mM dithiothreitol (DTT); it is sensitive to ionic conditions; it is stable over a wide range of pH; and it is eliminated by proteolysis, denaturation with heat, or treatment with DTT and N-ethylmaleimide. gp17 may be responsible for much of the actin-binding activity of plasma membranes since monovalent antibody fragments (Fab) directed primarily against gp17 inhibit actin-membrane binding by 96% in sedimentation assays. In contrast, Fab directed against cell surface determinants inhibit binding by only 0-10%. The actin-binding site of gp17 appears to be located on the cytoplasmic surface of the membrane since Fab against this protein continue to inhibit 96% of actin-membrane binding even after extensive adsorption against cell surfaces. gp17 is abundant in the plasma membrane, constituting 0.4-1.0% of the total membrane protein. A transmembrane orientation of gp17 is suggested since, in addition to the cytoplasmic localization of the actin-binding site, extracellular determinants of gp17 are identified. gp17 is surface-labeled by sulfo-N-hydroxy-succinimido-biotin, a reagent that cannot penetrate the cell membrane. Also, gp17 is glycosylated since it is specifically bound by the lectin, concanavalin A. We propose that gp17 is a major actin-binding protein that is important for connecting the plasma membrane to the underlying microfilament network. Therefore, we have named this protein "ponticulin" from the Latin word, ponticulus, which means small bridge.


Sign in / Sign up

Export Citation Format

Share Document