parasite life cycle
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 76)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Junjie Hu ◽  
Jun Sun ◽  
Yanmei Guo ◽  
Hongxia Zeng ◽  
Yunzhi Zhang ◽  
...  

Abstract Background Data on the genus Sarcocystis in insectivores are limited. The Asian gray shrew Crocidura attenuata is one of the most common species of the insectivore family Soricidae in South Asia and Southeast Asia. To our knowledge, species of Sarcocystis have never been recorded previously in this host. Methods Tissues were obtained from 42 Asian gray shrews caught in 2017 and 2018 in China. Sarcocysts were observed using light microscopy (LM) and transmission electron microscopy (TEM). To describe the parasite life cycle, muscle tissues of the host infected with sarcocysts were force-fed to two beauty rat snakes Elaphe taeniura. Individual sarcocysts from different Asian gray shrews, and oocysts/sporocysts isolated from the small intestines and feces of the experimental snakes, were selected for DNA extraction, and seven genetic markers, namely, two nuclear loci [18S ribosomal DNA (18S rDNA) and internal transcribed spacer region 1 (ITS1)], three mitochondrial genes [cytochrome oxidase subunit 1 (cox1), cox3 and cytochrome b], and two apicoplast genes (RNA polymerase beta subunit and caseinolytic protease C), were amplified, sequenced and analyzed. Results Sarcocysts were found in 17 of the 42 (40.5%) Asian gray shrews. Under LM, the microscopic sarcocysts showed saw- or tooth-like protrusions measuring 3.3–4.5 μm. Ultrastructurally, the sarcocyst wall contained numerous lancet- or leaf-like villous protrusions, similar to those described for type 9h of the common cyst wall classification. The experimental beauty rat snakes shed oocysts/sporocysts measuring 11.9–16.7 × 9.2–10.6 μm with a prepatent period of 10–11 days. Comparison of the newly obtained sequences with those previously deposited in GenBank revealed that those of 18S rDNA and cox1 were most similar to those of Sarcocystis scandentiborneensis recorded in the tree shrews Tupaia minor and Tupaiatana (i.e., 97.6–98.3% and 100% identity, respectively). Phylogenetic analysis based on 18S rDNA or ITS1 sequences placed this parasite close to Sarcocystis spp. that utilize small animals as intermediate hosts and snakes as the known or presumed definitive host. On the basis of morphological and molecular characteristics and host specificity, the parasite was proposed as a new species, named Sarcocystis attenuati. Conclusions Sarcocysts were recorded in Asian gray shrews, to our knowledge for the first time. Based on morphological and molecular characterization, a new species of parasite is proposed: Sarcocystisattenuati. According to the LM and TEM results, S. attenuati sarcocysts are distinct from those of Sarcocystis spp. in other insectivores and those of S. scandentiborneensis in tree shrews. The 18S rDNA or cox1 sequences of Sarcocystis attenuati shared high similarity with those of Sarcocystisscandentiborneensis, Sarcocystis zuoi, Sarcocystis cf. zuoi in the Malayan field rat, and Sarcocystis sp. in the greater white-toothed shrew. Therefore, we suggest that more research on the relationships of these closely related taxa should be undertaken in the future. Graphical abstract


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Ulrich Membe Femoe ◽  
Joseph Bertin Kadji Fassi ◽  
Hermine Boukeng Jatsa ◽  
Yannick Leonel Tchoffo ◽  
David Carel Amvame Nna ◽  
...  

Despite the global efforts, schistosomiasis remains a public health problem in several tropical and subtropical countries. One of the major challenges in the fight against schistosomiasis is the interruption of the parasite life cycle. Here, we evaluated the anticercarial, cytotoxicity, and phytochemical profiles of Sida acuta (HESa) and Sida rhombifolia (HESr) hydroethanolic extracts (Malvaceae). Schistosoma mansoni cercaria was collected from fifteen Biomphalaria pfeifferi-infected snails. Twenty-five cercariae were incubated in duplicate with different concentrations (31.25–1,000 μg/mL) of HESa or HESr. The cercaria viability was monitored at 30 min time intervals for 150 min, and the concentration-response curve of each plant extract was used to determine their respective lethal concentration 50 (LC50). Additionally, the cytotoxicity profile of each plant extract was evaluated on the Hepa 1–6 cell line at a concentration range of 15.625–1,000 µg/mL using the WST-8 assay method and its inhibitory concentration 50 (IC50) was calculated. Moreover, phytochemical characterization of each plant extract was carried out by HPLC-MS. Both extracts exhibited cercaricidal activity in a time- and concentration-dependent manner. At 30 min time point, HESa (LC50 = 28.41 ± 3.5 µg/mL) was more effective than HESr (LC50 = 172.42 ± 26.16 µg/mL) in killing S. mansoni cercariae. Regarding the cytotoxicity effect of both extracts, the IC50 of HESa (IC50 = 109.67 µg/mL) was lower than that of HESr (IC50 = 888.79 µg/mL). The selectivity index was 3.86 and 5.15 for HESa and HESr, respectively. Fifteen compounds were identified from HESa and HESr after HPLC-MS analysis. N-Feruloyltyramine, a polyphenol, and thamnosmonin, a coumarin, were identified in both extracts. HESa and HESr displayed cercaricidal activity and were not toxic on Hepa 1–6 cell line. Based on the selectivity index of these extracts, S. rhombifolia extract could be more effective on S. mansoni cercariae than S. acuta extract. This study could provide baseline information for further investigations aiming to develop plant-based alternative drugs against S. mansoni.


2021 ◽  
Author(s):  
Sophie Williams ◽  
Xiulian Yu ◽  
Tao Ni ◽  
Robert Gilbert ◽  
Phillip Stansfeld

Perforin-like proteins (PLPs) play key roles in the mechanisms associated with parasitic disease caused by apicomplexans such as Plasmodium (malaria) and Toxoplasma. The T. gondii PLP1 (TgPLP1) mediates tachyzoite egress from cells, while the five Plasmodium PLPs carry out various roles in the life cycle of the parasite and with respect to the molecular basis of disease. Here we focus on Plasmodium vivax PLP1 and PLP2 (PvPLP1 and PvPLP2) compared to TgPLP1; PvPLP1 is important for invasion of mammalian hosts by the parasite and establishment of a chronic infection, PvPLP2 is important during the symptomatic blood stage of the parasite life cycle. Determination of the crystal structure of the membrane-binding APCβ domain of PvPLP1 reveals notable differences with that of TgPLP1, which are reflected in its inability to bind lipid bilayers in the way that TgPLP1 and PvPLP2 can be shown to. Molecular dynamics simulations combined with site-directed mutagenesis and functional assays allow a dissection of the binding interactions of TgPLP1 and PvPLP2 on lipid bilayers, and reveal a similar tropism for lipids found enriched in the inner leaflet of the mammalian plasma membrane. In addition to this shared mode of membrane binding PvPLP2 displays a secondary synergistic interaction side-on from its principal bilayer interface. This study underlines the substantial differences between the biophysical properties of the APCβ domains of Apicomplexan PLPs, which reflect their significant sequence diversity. Such differences will be important factors in determining the cell targeting and membrane-binding activity of the different proteins, in their different developmental roles within parasite life cycles.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1601
Author(s):  
Manuel Uribe ◽  
Sara López-Osorio ◽  
Jenny J. Chaparro-Gutiérrez

Gurltia paralysans is a rare metastrongyloid nematode in South America that has begun to gain relevance in feline internal medicine as a differential diagnosis of progressive degenerative myelopathy disorders. The parasite life cycle has not been fully elucidated but probably involves invertebrate gastropod fauna as obligate intermediate hosts; thus, G. paralysans remaining an extremely neglected parasitosis. Feline gurltiosis intra vitam diagnosis is highly challenging due to lack of evidence in the excretion of G. paralysans eggs and larvae, neither in feces nor in other body secretions because environmental stages and the transmission route of the parasite remain unknown. Unfortunately, no experimental trials for the treatment of feline gurltiosis have been conducted to date. However, there are some reports of the successfully antiparasitic drugs used with different effectiveness and clinical improvement results in diagnosed cats. Further studies are needed to evaluate the parasite occurrence among domestic cats and the neotropical wild felid species distributed within Colombia in addition to the gastropod fauna that may harbor the developing larvae (L1–L3) stages of this underestimated parasite.


mBio ◽  
2021 ◽  
Author(s):  
Sudhir Kumar ◽  
Meseret T. Haile ◽  
Michael R. Hoopmann ◽  
Linh T. Tran ◽  
Samantha A. Michaels ◽  
...  

Transmission of the malaria parasite to the mosquito vector is critical for the completion of the sexual stage of the parasite life cycle and is dependent on the release of male gametes from the gametocyte body inside the mosquito midgut. In the present study, we demonstrate that PfCDPK4 is critical for male gametogenesis and is involved in phosphorylation of proteins essential for male gamete emergence.


Author(s):  
Clayton T. James ◽  
Marie F. Veillard ◽  
Amanda M. Martens ◽  
Emmanuel A. Pila ◽  
Alyssa Turnbull ◽  
...  

We provide the first documented case of whirling disease (WD) impacts to wild, self-sustaining rainbow trout (RNTR, Oncorynchus mykiss) populations in Canada. Myxobolus cerebralis (Mc), the causative agent of WD, was first confirmed in Alberta in 2016. However, evidence of disease in local fish populations was unknown. Using a weight-of-evidence approach, we examined multiple parasite life cycle stages in the Crowsnest River, Alberta. Percentage of infected Tubifex tubifex worms actively shedding triactinomyxons (TAMs) exceeded known thresholds of Mc establishment and TAM densities instream exceeded thresholds known to cause ≥90% declines in RNTR populations. Mc was detected at 5 of 6 study sites in water, fish, and worms. Disease severity was highest in the lower watershed where 100% of sentinel fish tested positive for Mc 7 to 14 days post-exposure; up to 85% of wild fingerling RNTR showed clinical signs of disease and yearling trout were largely absent from the river suggesting reduced survival. Our findings indicate conditions necessary for outbreak of WD exist in Alberta, highlighting the need to consider this disease as an emerging threat to wild salmonid populations.


Author(s):  
Daniel Holanda Barroso ◽  
Otávio de Toledo Nóbrega ◽  
Carla Nunes de Araújo ◽  
Gustavo Subtil Magalhães Freire ◽  
Sofia Sales Martins ◽  
...  

Leishmania braziliensis is the most important causal agent of American tegumentary leishmaniasis (ATL), and 3 to 5% of patients develop mucosal lesions. The mechanisms related to parasite and host immune interactions and the parasite life cycle that lead to dissemination to the mucosa are poorly understood. We aimed to detect L. braziliensis DNA in the nasal mucosa of cutaneous leishmaniasis (CL) patients with early mucous dissemination and to relate those findings to specific inflammatory responses. Nasal swabs were collected from patients with the cutaneous form of ATL. L. braziliensis DNA was investigated using TaqMan-based real-time PCR. The levels of serum cytokines (IL-12, IL-6, TNF-α, IL-10, IL-1β and IL-8) were measured by a multiplex cytometric array. A Poisson regression model was used to test prevalence ratios (PRs) and multivariate interactions of clinical and laboratory characteristics. Of the 79 CL patients, 24 (30%) had L. braziliensis DNA in the nasal mucosa. In the multivariate model, parasite DNA presence in mucosa was associated with a reduction in IL-12 levels (PR = 0.440; p=0.034), increased IL-6 levels (PR = 1.001; p=0.002) and a higher number of affected body segments (PR = 1.65; p<0.001). In this study, we observed a higher rate of early dissemination to the nasal mucosa than what was previously described. We suggest that an enhanced Th1 profile characterized by higher IL-12 is important for preventing dissemination of L. braziliensis to the mucosa. Further evaluation of parasite-related interactions with the host immunological response is necessary to elucidate the dissemination mechanisms of Leishmania.


2021 ◽  
Author(s):  
Ábris Ádám Bendes ◽  
Petri Kursula ◽  
Inari Kursula

Abstract Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the β-subunit is downregulated,. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a β-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium.


2021 ◽  
Author(s):  
junjie hu ◽  
Jun Sun ◽  
Yanmei Guo ◽  
Hongxia Zeng ◽  
Yunzhi Zhang ◽  
...  

Abstract Background: There are limited data on Sarcocystis in insectivores. The Asian gray shrew, Crocidura attenuata, is one of the most common species of insectivores in the family Soricidae distributed in South Asia and Southeast Asia. To date, Sarcocystis has never been recorded in this host.Methods: Tissues from 42 Asian gray shrews were collected in China in 2017 and 2018. Sarcocysts were observed using light (LM) and transmission electron microscopy (TEM). To complete the parasite life cycle, muscle tissues of the host infected with sarcocysts were force-fed to two beauty rat snakes, Elaphe taeniura. Individual sarcocysts from different Asian gray shrews and oocysts/sporocysts isolated from the small intestines and feces of the experimental snakes were selected for DNA extraction, and seven genetic markers, including two nuclear loci (18S rDNA and ITS1), three mitochondrial genes (cox1, cox3 and cytb), and two apicoplastic genes (rpoB and clpC), were amplified, sequenced and analyzed.Results: Sarcocysts were found in 17 of 42 (40.5%) Asian gray shrews. Under LM, the microscopic sarcocysts were exhibited saw-tooth-like protrusions measuring 3.3–4.5 μm. Ultrastructurally, the sarcocyst wall contained numerous lancet- or leaf-like villous protrusions, similar to type 9h. The experimental beauty rat snakes shed oocysts/sporcysts measuring 11.9–16.7 × 9.2–10.6 μm with a prepatent period of 10 to 11 days. Comparing these sequences with those previously deposited in GenBank revealed that the 18S rDNA sequences and cox1 sequences shared the highest similarity with those of S. scandentiborneensis recorded in tree shrews, Tuaia minor and T. tana (i.e., 97.6–98.3% and 100% identity, respectively). Phylogenetic analysis based on 18S rDNA, ITS1 or cox1 sequences revealed that this parasite formed an independent clade with Sarcocystis spp. that utilize small animals as intermediate hosts and snakes as the known or presumed definitive host. On the basis of morphological and molecular characteristics and host specificity, the parasite was proposed as a new species, named S. attenuati.Conclusions: Sarcocysts were recorded in Asian gray shrews for the first time. The sarcocysts were characterized morphologically and molecularly. The 18S rDNA and cox1 sequences of S. attenuati, named in the present study, shared the highest identities with those of S. scandentiborneensis. However, the sarcocysts of the two species of Sarcocystis were quite different under LM and TEM. Based on experimental infection, beauty rat snakes have been proven to be a definitive host of S. attenuati. As more species of Sarcocystis from insectivores and other small mammals are properly morphologically and molecularly characterized, we may gain a better understanding of the biodiversity, host specificity and evolution of Sarcocystis in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Viviane Corrêa Santos ◽  
Antonio Edson Rocha Oliveira ◽  
Augusto César Broilo Campos ◽  
João Luís Reis-Cunha ◽  
Daniella Castanheira Bartholomeu ◽  
...  

AbstractCruzipains are the main papain-like cysteine proteases of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Encoded by a multigenic family, previous studies have estimated the presence of dozens of copies spread over multiple chromosomes in different parasite strains. Here, we describe the complete gene repertoire of cruzipain in three parasite strains, their genomic organization, and expression pattern throughout the parasite life cycle. Furthermore, we have analyzed primary sequence variations among distinct family members as well as structural differences between the main groups of cruzipains. Based on phylogenetic inferences and residue positions crucial for enzyme function and specificity, we propose the classification of cruzipains into two families (I and II), whose genes are distributed in two or three separate clusters in the parasite genome, according with the strain. Family I comprises nearly identical copies to the previously characterized cruzipain 1/cruzain, whereas Family II encompasses three structurally distinct sub-types, named cruzipain 2, cruzipain 3, and cruzipain 4. RNA-seq data derived from the CL Brener strain indicates that Family I genes are mainly expressed by epimastigotes, whereas trypomastigotes mainly express Family II genes. Significant differences in the active sites among the enzyme sub-types were also identified, which may play a role in their substrate selectivity and impact their inhibition by small molecules.


Sign in / Sign up

Export Citation Format

Share Document