Rapid Dye Adsorption via Surface Modification of TiO2 Photoanodes for Dye-Sensitized Solar Cells

2013 ◽  
Vol 5 (11) ◽  
pp. 5201-5207 ◽  
Author(s):  
Boeun Kim ◽  
Se Woong Park ◽  
Jae-Yup Kim ◽  
Kicheon Yoo ◽  
Jin Ah Lee ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2150
Author(s):  
Ji-Hye Kim ◽  
Sung-Yoon Park ◽  
Dong-Hyuk Lim ◽  
So-Young Lim ◽  
Jonghoon Choi ◽  
...  

Organic solvents used for electrolytes of dye-sensitized solar cells (DSSCs) are generally not only toxic and explosive but also prone to leakage due to volatility and low surface tension. The representative dyes of DSSCs are ruthenium-complex molecules, which are expensive and require a complicated synthesis process. In this paper, the eco-friendly DSSCs were presented based on water-based electrolytes and a commercially available organic dye. The effect of aging time after the device fabrication and the electrolyte composition on the photovoltaic performance of the eco-friendly DSSCs were investigated. Plasma treatment of TiO2 was adopted to improve the dye adsorption as well as the wettability of the water-based electrolytes on TiO2. It turned out that the plasma treatment was an effective way of improving the photovoltaic performance of the eco-friendly DSSCs by increasing the efficiency by 3.4 times. For more eco-friendly DSSCs, the organic-synthetic dye was replaced by chlorophyll extracted from spinach. With the plasma treatment, the efficiency of the eco-friendly DSSCs based on water-electrolytes and chlorophyll was comparable to those of the previously reported chlorophyll-based DSSCs with non-aqueous electrolytes.


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 33855-33862 ◽  
Author(s):  
Molang Cai ◽  
Xu Pan ◽  
Weiqing Liu ◽  
John Bell ◽  
Songyuan Dai

DMImBS is used as a novel additive in dye-sensitized solar cells to restrain the electron recombination and intercalation of Li+.


2013 ◽  
Vol 117 (33) ◽  
pp. 17033-17038 ◽  
Author(s):  
Mitsunori Honda ◽  
Masatoshi Yanagida ◽  
Liyuan Han ◽  
Kenjiro Miyano

2020 ◽  
Vol 2 (1) ◽  
pp. 199-209 ◽  
Author(s):  
T. M. W. J. Bandara ◽  
M. Furlani ◽  
I. Albinsson ◽  
Angela Wulff ◽  
B.-E. Mellander

The incorporation of nanostructures that improve light scattering and dye adsorption has been suggested for dye-sensitized solar cells (DSSCs), but the manufacture of photonic and nanostructured materials with the desired properties is not an easy task.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 325
Author(s):  
Liqing Liu ◽  
Hui Wang ◽  
Dehao Wang ◽  
Yongtao Li ◽  
Xuemin He ◽  
...  

The ZnO@TiO2 core/shell nanowire arrays with different thicknesses of the TiO2 shell were synthesized, through depositing TiO2 on the ZnO nanowire arrays using the pulsed laser deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that these core/shell nanowires were homogeneously coated with TiO2 nanoparticles with high crystallinity, appearing to be a rather rough surface compared to pure ZnO nanowires. The efficiency of ZnO@TiO2 core/shell structure-based dye-sensitized solar cells (DSSCs) was improved compared with pure ZnO nanowires. This is mainly attributed to the enlarged internal surface area of the core/shell structures, which increases dye adsorption on the anode to improve the light harvest. In addition, the energy barrier which formed at the interface between ZnO and TiO2 promoted the charge separation and suppressed the carrier recombination. Furthermore, the efficiency of DSSCs was further improved by increasing the thickness of the TiO2 shell. This work shows an efficient method to achieve high power conversion efficiency in core/shell nanowire-based DSSCs.


Sign in / Sign up

Export Citation Format

Share Document