aluminum oxides
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 81)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 25 ◽  
Author(s):  
Kaio Hemerson Dutra ◽  
Francisco Nivaldo Aguiar Freire ◽  
Diego Caitano Pinho ◽  
Felipe Alves Albuquerque Araújo

Author(s):  
Максим Николаевич Коваленко ◽  
Наталья Анатольевна Алексеенко ◽  
Людмила Владимировна Маркова ◽  
Любовь Сергеевна Рутковская ◽  
Мария Петровна Патапович ◽  
...  

Проведено исследование процессов образования смешанных нанопорошков Al, оксидов меди и алюминия, прекурсоров для получения нанокерамик типа CuAlO и CuAlO при воздействии сдвоенных лазерных импульсов энергией 53 мДж и между импульсным интервалом 10 мкс на мишень, состоящую из пластинок алюминия марки АД1 и меди марки М2, склеенных между собой и помещенную в закрытую стеклянную прямоугольную кювету. Установлено, что последовательное воздействие серий сдвоенных лазерных на мишень из алюминия, а затем на мишень из меди приводит к многократному увеличению выхода субоксидов AlO, ионов и атомов алюминия и меди в лазерном факеле, направляемом на подложку, при напылении пленок, по сравнению с воздействием одиночными лазерными импульсами. Изучены процессы, происходящие на поверхности подложки при напылении пленок. Показана возможность получения прекурсоров для получения нанокерамик типа CuAlO и CuAlO. A study of formation of mixed Al nanopowders, copper and aluminum oxides, and precursors for production of CuAlO and CuAlO nanoceramics under the influence of double laser pulses with energy of 53 mJ and the interpulse interval of 10 microseconds on a target consisting of plates of aluminum grade AD1 and copper grade M2, 0,4 mm thick, glued together and placed in a closed rectangular glass cuvette. It is found that the successive exposure of a series of double laser beams to an aluminum target and then to a copper target leads to a multiple increase in the yield of AlO suboxides, aluminum and copper ions and atoms in the laser torch, compared with the exposure to single laser pulses. To better understand the hidden mechanisms of this dependence, we study the processes occurring both on the surface and in the near-surface laser plasma inside the resulting microchannel when the target is broken by a series of single and double laser pulses. The possibility of obtaining precursors for the production of nanoceramics such as CuAlO, CuAlO is shown.


2021 ◽  
Vol 21 (6) ◽  
pp. 368-381
Author(s):  
L. A. Isupova ◽  
O. N. Kovalenko ◽  
A. V. Andreeva ◽  
O. S. Vedernikov ◽  
A. A. Lamberov ◽  
...  

The paper considers the main methods used to obtain aluminum oxides; the advantages of using hydrargillite thermal activation products for the synthesis of catalysts, supports and sorbents; the factors affecting the properties of thermal activation products and aluminum oxides obtained by thermal activation; and examples of the efficient application of hydrargillite centrifugal thermal activation products in the synthesis of catalysts, supports and sorbents.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1811
Author(s):  
Aliya N. Mukhamed’yarova ◽  
Bulat I. Gareev ◽  
Danis K. Nurgaliev ◽  
Firdavs A. Aliev ◽  
Alexey V. Vakhin

Aluminum oxides and hydroxides are widely applied because of the great variety of their modifications. In particular, aluminum oxides and hydroxides are used in petrochemistry and oil refining. However, amorphous aluminum compounds have not been sufficiently studied due to the complexity of their synthesis and the problems encountered during their study. The study of amorphous aluminum compounds is hindered by the ambiguity of terminology. In this work, the structures of amorphous aluminum compounds prepared by different methods and the properties that determine their applications have been highlighted in detail. Amorphous aluminum compounds play both positive and negative roles in petrochemistry; however, in petroleum refining, amorphous compounds (without promoters and transition metal salts) demonstrate a promising catalytic performance in oil upgrading.


2021 ◽  
Vol 64 (7) ◽  
pp. 484-487
Author(s):  
A. М. Grigor’ev ◽  
K. V. Grigorovich ◽  
А. Yu. Em ◽  
A. O. Morozov

The rail steel properties are adversely affected by rigid non-metallic inclusions, containing aluminum oxides. Therefore, aluminum content is limited to 0.004 % wt. in rail steel grades. Aluminum can get into steel from charge materials and refractory lining. In this work, we’ve analyzed how the chemical composition of refractories used in rail steel making influence steel quality on example of one domestic enterprise. To determine the main types of non-metallic inclusions created in E76F rail steels, we have performed fractional gas analysis of the samples taken in various process steps. It was found that the slag composition after degassing changes insignificantly, while the most part of non-metallic inclusions in rail steel is represented by aluminates.


2021 ◽  
pp. 66-71
Author(s):  
Alekcey Safronov ◽  
Vladimir Kuznetsov ◽  
Juliy Dudnik ◽  
Vasiliy Shiryaev ◽  
Olga Vasilieva

The paper deals with two plasma-chemical synthesis installations based on alternating cur-rent plasma torches with power up to 30 kW, which can be used for production of ultrafine (nanosized) oxide and carbide materials. Some results obtained during experimental studies on the production of ultrafine powders of metal oxides (iron and aluminum) are presented.


Environments ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 66
Author(s):  
Gianniantonio Petruzzelli ◽  
Francesca Pedron

The increasing use of tungsten in the production of green energy in the aerospace and military industries, and in many other hi-tech applications, may increase the content of this element in soil. This overview examines some aspects of the behavior of tungsten in soil, such as the importance of characteristics of soils in relation to bioavailability processes, the chemical approaches to evaluate tungsten mobility in the soil environment and the importance of adsorption and desorption processes. Tungsten behavior depends on soil properties of which the most important is soil pH, which determines the solubility and polymerization of tungstate ions and the characteristics of the adsorbing soil surfaces. During the adsorption and desorption of tungsten, iron, and aluminum oxides, and hydroxides play a key role as they are the most important adsorbing surfaces for tungsten. The behavior of tungsten compounds in the soil determines the transfer of this element in plants and therefore in the food chain. Despite the growing importance of tungsten in everyday life, environmental regulations concerning soil do not take this element into consideration. The purpose of this review is also to provide some basic information that could be useful when considering tungsten in environmental legislation.


Sign in / Sign up

Export Citation Format

Share Document