Studies of .beta.-sheet structure in lysozyme by proton nuclear magnetic resonance. Assignments and analysis of spin-spin coupling constants

Biochemistry ◽  
1982 ◽  
Vol 21 (19) ◽  
pp. 4756-4761 ◽  
Author(s):  
Muriel Delepierre ◽  
Christopher M. Dobson ◽  
Flemming M. Poulsen

1996 ◽  
Vol 74 (8) ◽  
pp. 1524-1525 ◽  
Author(s):  
Ted Schaefer ◽  
Guy M. Bernard ◽  
Frank E. Hruska

An excellent linear correlation (r = 0.9999) exists between the spin–spin coupling constants 1J(1H,13C), in benzene dissolved in four solvents (R. Laatikainen et al. J. Am. Chem. Soc. 117, 11006 (1995)) and Ando's solvation dielectric function, ε/(ε – 1). The solvents are cyclohexane, carbon disulfide, pyridine, and acetone. 1J(1H,13C)for gaseous benzene is predicted to be 156.99(2) Hz at 300 K. Key words: spin–spin coupling constants, 1J(1H,13C) for benzene in the vapor phase; spin–spin coupling constants, solvent dielectric constant dependence of 1J(1H,13C) in benzene; benzene, estimate of 1J(1H,13C) in the vapor; nuclear magnetic resonance, estimate of 1J(1H,13C) in gaseous benzene.



1988 ◽  
Vol 66 (8) ◽  
pp. 1821-1823 ◽  
Author(s):  
Glenn H. Penner ◽  
William P. Power ◽  
Roderick E. Wasylishen

The anisotropy of the indirect 31P,199Hg spin–spin coupling constant, ΔJ, in solid [HgP(o-tolyl)3(NO3)2]2 is obtained from an analysis of the 31P nuclear magnetic resonance powder pattern. The value of ΔJ, 5170 ± 250 Hz, is large and indicates that mechanisms other than the Fermi contact mechanism are important for this spin–spin coupling. The powder spectrum also indicates that the absolute sign of 1J(31P,199Hg) is positive.



1995 ◽  
Vol 73 (12) ◽  
pp. 2208-2216 ◽  
Author(s):  
Ted Schaefer ◽  
Scott Kroeker ◽  
David M. McKinnon

The 1H nuclear magnetic resonance spectra of 2-formylstyrene, from dilute solutions in CS2–C6DI2 and acetone-d6, are analyzed to yield precise chemical shifts and spin–spin coupling constants. The long-range coupling constants imply a conformational distribution in which the O-trans conformer is 55% abundant in both polar and nonpolar environments. They also imply that the vinyl group, on average, is twisted out of the aromatic plane to a much larger extent than in styrene. The 6-31G* basis set gives an ab initio potential for the torsion of the vinyl moiety with a relatively deep minimum at 38° out-of-plane, for the O-cis conformer. For the O-trans conformer, two minima are found, one at 45° and another at 129.6°. Essentially the same potential is obtained with the 6-31G** basis. The latter corresponds to a close approach of the hydrogen atom of the formyl group and π orbitals or the β-carbon atom of the olefinic side chain. This local minimum is interesting in terms of a hypothesis used to explain the photochemistry of the molecule. The long-range coupling constants are consistent with the conformational properties calculated for the free molecule; they also indicate no significant difference between the conformational behaviour of the molecule in the two solvents. A proximate coupling constant of −0.16 Hz exists between the formyl and methine (α) protons. The latter is strongly deshielded in the presence of the formyl group, so that it becomes even less shielded than some of the aromatic protons. Keywords: 1H NMR, 2-formylstyrene (o-vinylbenzaldehyde); long-range spin–spin coupling constants, 2-formylstyrene; conformations, three nonplanar of 2-formylstyrene; molecular orbital calculations, conformations of 2-formylstyrene.



Sign in / Sign up

Export Citation Format

Share Document