Interaction of calmodulin and a calmodulin-binding peptide from myosin light chain kinase: major spectral changes in both occur as the result of complex formation

Biochemistry ◽  
1985 ◽  
Vol 24 (27) ◽  
pp. 8152-8157 ◽  
Author(s):  
Rachel E. Klevit ◽  
Donald K. Blumenthal ◽  
David E. Wemmer ◽  
Edwin G. Krebs
1984 ◽  
Vol 218 (3) ◽  
pp. 863-870 ◽  
Author(s):  
P K Ngai ◽  
C A Carruthers ◽  
M P Walsh

A simple and rapid procedure for the purification of the native form of chicken gizzard myosin light-chain kinase (Mr 136000) is described which eliminates problems of proteolysis previously encountered. During this procedure, a calmodulin-binding protein of Mr 141000, which previously co-purified with the myosin light-chain kinase, is removed and shown to be a distinct protein on the basis of lack of kinase activity, different chymotryptic peptide maps, lack of cross-reactivity with a monoclonal antibody to turkey gizzard myosin light-chain kinase, and lack of phosphorylation by the purified catalytic subunit of cyclic AMP-dependent protein kinase. This Mr-141000 calmodulin-binding protein is identified as caldesmon on the basis of Ca2+-dependent interaction with calmodulin, subunit Mr, Ca2+-independent interaction with skeletal-muscle F-actin, Ca2+-dependent competition between calmodulin and F-actin for caldesmon, and tissue content.


1991 ◽  
Vol 69 (12) ◽  
pp. 771-800 ◽  
Author(s):  
Michael P. Walsh

The contractile state of smooth muscle is regulated primarily by the sarcoplasmic (cytosolic) free Ca2+ concentration. A variety of stimuli that induce smooth muscle contraction (e.g., membrane depolarization, α-adrenergic and muscarinic agonists) trigger an increase in sarcoplasmic free [Ca2+] from resting levels of 120–270 to 500–700 nM. At the elevated [Ca2+], Ca2+ binds to calmodulin, the ubiquitous and multifunctional Ca2+-binding protein. The interaction of Ca2+ with CaM induces a conformational change in the Ca2+-binding protein with exposure of a site(s) of interaction with target proteins, the most important of which in the context of smooth muscle contraction is the enzyme myosin light chain kinase. The interaction of calmodulin with myosin light chain kinase results in activation of the kinase that catalyzes phosphorylation of myosin at serine-19 of each of the two 20-kDa light chains (native myosin is a hexamer composed of two heavy chains (230 kDa each) and two pairs of light chains (one pair of 20 kDa each and the other pair of 17 kDa each)). This simple phosphorylation reaction triggers cycling of myosin cross-bridges along actin filaments and the development of force. Relaxation of the muscle follows removal of Ca2+ from the sarcoplasm, whereupon calmodulin dissociates from myosin light chain kinase regenerating the inactive kinase; myosin is dephosphorylated by myosin light chain phosphatase(s), whereupon it dissociates and remains detached from the actin filament and the muscle relaxes. A substantial body of evidence has been accumulated in support of this central role of myosin phosphorylation–dephosphorylation in the regulation of smooth muscle contraction. However, a wide range of physiological and biochemical studies supports the existence of additional, secondary Ca2+-dependent mechanisms that can modulate or fine-tune the contractile state of the smooth muscle cell. Three such mechanisms have emerged: (i) the actin-, tropomyosin-, and calmodulin-binding protein, calponin; (ii) the actin-, myosin-, tropomyosin-, and calmodulin-binding protein, caldesmon; and (iii) the Ca2+- and phospholipid-dependent protein kinase (protein kinase C).Key words: smooth muscle, Ca2+, myosin phosphorylation, regulation of contraction.


1999 ◽  
Vol 344 (2) ◽  
pp. 403-411 ◽  
Author(s):  
Estelle LECLERC ◽  
Chantal CORTI ◽  
Holger SCHMID ◽  
Stefan VETTER ◽  
Peter JAMES ◽  
...  

The interaction of serine/threonine-phosphorylated calmodulin with synthetic peptides corresponding to the calmodulin-binding domains of six enzymes has been studied by fluorescence spectroscopy. For five peptides, the dissociation constant of the calmodulin-peptide complex (Kd) increased when calmodulin was phosphorylated. An increase of more than one order of magnitude was observed with peptides derived from smooth-muscle myosin light-chain kinase and cAMP phosphodiesterase. In contrast, only a slight increase in Kd was noted with two peptides derived from the plasma membrane Ca2+-ATPase and for the peptide derived from nitric oxide synthase. No significant change in affinity was detected with the peptide derived from calcineurin. In contrast, a decrease in the dissociation constant was observed with the peptide derived from the Ca2+-calmodulin dependent kinase II. Phosphorylation also affected the peptide-calmodulin binding stoichiometry: a decrease from two to one binding sites was observed with the peptides derived from myosin light-chain kinase and phosphodiesterase.


2017 ◽  
Vol 39 (3) ◽  
pp. 309-319
Author(s):  
Vu Van Dung ◽  
Yoshitaka Umetsu ◽  
Shinya Ohki

In our previous study, functional ability and conformational stability had been examined for C-terminal deletion mutants of a 148-residue Ca2+-binding protein, chicken calmodulin (CaM). In that study, we had reported that a mutant named CCMΔ5, missing five residues at the C-terminus, activates CaM-target as much as full-length CaM does. This finding is intriguing because CCMΔ5 lacks the key residues, Met144 and Met145, for the target activation. To uncover why CCMΔ5 displays proper function, here we report the three-dimensional structure of CCMΔ5 bound to the peptide derived from skeletal muscle myosin light-chain kinase (skMLCK). The structure determination was achieved using multidimensional nuclear magnetic resonance (NMR) spectroscopy. The complex structure of CCM∆5-skMLCK was compared to that of wild CaM-skMLCK. The results showed that the orientation of helix-1 and helix-5 in CCM∆5 differs from those in wild CaM. Moreover, distinctive hydrophobic interaction manner was found in the binding between CCM∆5 and peptide; Phe141, Ala128, Met109, Leu105 and Phe92 of CCM∆5 contribute to the interaction with Trp4 of the skMLCK peptide.   Abbreviations: CaM, calmodulin; CCMΔX, a deletion mutant of CaM that lacks X C-terminal residues; NMR, Nuclear magnetic resonance; PDB, Protein date bank; skMLCK, skeletal muscle myosin light-chain kinase; TOF-MS, Time-of-flight mass spectrometry; RMSD, root mean square deviation; SDS-PAGE, Sodium dodecyl sulfate polyacrylamide gel electrophoresis Citation: Vu Van Dung, Umetsu Y., Ohki S., 2017. Three-dimensional structure of the complex between calmodulin mutant lacking the c-terminal five residues and the calmodulin-binding peptide derived from skeletal muscle myosin light-chain kinase. Tap chi Sinh hoc, 39(3): 309-319. DOI: 10.15625/0866-7160/v39n3.10111. *Corresponding author: [email protected] Received 19 June 2017, accepted 20 August 2017 


Sign in / Sign up

Export Citation Format

Share Document