Probing DNA Polymerase−DNA Interactions:  Examining the Template Strand in Exonuclease Complexes Using 2-Aminopurine Fluorescence and Acrylamide Quenching†

Biochemistry ◽  
2007 ◽  
Vol 46 (22) ◽  
pp. 6559-6569 ◽  
Author(s):  
Dina Tleugabulova ◽  
Linda J. Reha-Krantz
2004 ◽  
Vol 383 (2) ◽  
pp. 371-382 ◽  
Author(s):  
Benoit THOUVENOT ◽  
Bruno CHARPENTIER ◽  
Christiane BRANLANT

The Escherichia coli multi-promoter region of the gapA gene ensures a high level of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) production under various growth conditions. In the exponential phase of growth, gapA mRNAs are mainly initiated at the highly efficient gapA P1 promoter. In the present study, by using site-directed mutagenesis and chemical probing of the RPo (open complex) formed by Eσ70 (holoenzyme associated with σ70) RNAP (RNA polymerase) at promoter gapA P1, we show that this promoter is an extended −10 promoter that needs a −35 sequence for activity. The −35 sequence compensates for the presence of a suboptimal −10 hexamer. A tract of thymine residues in the spacer region, which is responsible for a DNA distortion, is also required for efficient activity. We present the first chemical probing of an RPo formed at a promoter needing both a −10 extension and a −35 sequence. It reveals a complex array of RNAP–DNA interactions. In agreement with the fact that residue A-11 in the non-template strand is flipped out in a protein pocket in previously studied RPos, the corresponding A residue in gapA P1 promoter is protected in RPo and is essential for activity. However, in contrast with some of the previous findings on RPos formed at other promoters, the −12 A:T pair is opened. Strong contacts with RNAP occur both with the −35 sequence and the TG extension, so that the σ4 and σ2 domains may simultaneously contact the promoter DNA. RNAP–DNA interactions were also detected immediately downstream of the −35 hexamer and in a more distal upstream segment, reflecting a wrapping of RNAP by the core and upstream promoter DNA. Altogether, the data reveal that promoter gapA P1 is a very efficient promoter sharing common properties with both extended −10 and non-extended −10 promoters.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Mark Hedglin ◽  
Senthil K Perumal ◽  
Zhenxin Hu ◽  
Stephen Benkovic

In most organisms, clamp loaders catalyze both the loading of sliding clamps onto DNA and their removal. How these opposing activities are regulated during assembly of the DNA polymerase holoenzyme remains unknown. By utilizing FRET to monitor protein-DNA interactions, we examined assembly of the human holoenzyme. The results indicate that assembly proceeds in a stepwise manner. The clamp loader (RFC) loads a sliding clamp (PCNA) onto a primer/template junction but remains transiently bound to the DNA. Unable to slide away, PCNA re-engages with RFC and is unloaded. In the presence of polymerase (polδ), loaded PCNA is captured from DNA-bound RFC which subsequently dissociates, leaving behind the holoenzyme. These studies suggest that the unloading activity of RFC maximizes the utilization of PCNA by inhibiting the build-up of free PCNA on DNA in the absence of polymerase and recycling limited PCNA to keep up with ongoing replication.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1739
Author(s):  
Chen-Yu Lo ◽  
Yang Gao

Bacteriophages have long been model systems to study the molecular mechanisms of DNA replication. During DNA replication, a DNA helicase and a DNA polymerase cooperatively unwind the parental DNA. By surveying recent data from three bacteriophage replication systems, we summarized the mechanistic basis of DNA replication by helicases and polymerases. Kinetic data have suggested that a polymerase or a helicase alone is a passive motor that is sensitive to the base-pairing energy of the DNA. When coupled together, the helicase–polymerase complex is able to unwind DNA actively. In bacteriophage T7, helicase and polymerase reside right at the replication fork where the parental DNA is separated into two daughter strands. The two motors pull the two daughter strands to opposite directions, while the polymerase provides a separation pin to split the fork. Although independently evolved and containing different replisome components, bacteriophage T4 replisome shares mechanistic features of Hel–Pol coupling that are similar to T7. Interestingly, in bacteriophages with a limited size of genome like Φ29, DNA polymerase itself can form a tunnel-like structure, which encircles the DNA template strand and facilitates strand displacement synthesis in the absence of a helicase. Studies on bacteriophage replication provide implications for the more complicated replication systems in bacteria, archaeal, and eukaryotic systems, as well as the RNA genome replication in RNA viruses.


1996 ◽  
Vol 271 (21) ◽  
pp. 12141-12144 ◽  
Author(s):  
William A. Beard ◽  
Wendy P. Osheroff ◽  
Rajendra Prasad ◽  
Michael R. Sawaya ◽  
Madhuri Jaju ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Robert P. Hayes ◽  
Mee Ra Heo ◽  
Mark Mason ◽  
John Reid ◽  
Christine Burlein ◽  
...  

AbstractAll herpesviruses encode a conserved DNA polymerase that is required for viral genome replication and serves as an important therapeutic target. Currently available herpesvirus therapies include nucleoside and non-nucleoside inhibitors (NNI) that target the DNA-bound state of herpesvirus polymerase and block replication. Here we report the ternary complex crystal structure of Herpes Simplex Virus 1 DNA polymerase bound to DNA and a 4-oxo-dihydroquinoline NNI, PNU-183792 (PNU), at 3.5 Å resolution. PNU bound at the polymerase active site, displacing the template strand and inducing a conformational shift of the fingers domain into an open state. These results demonstrate that PNU inhibits replication by blocking association of dNTP and stalling the enzyme in a catalytically incompetent conformation, ultimately acting as a nucleotide competing inhibitor (NCI). Sequence conservation of the NCI binding pocket further explains broad-spectrum activity while a direct interaction between PNU and residue V823 rationalizes why mutations at this position result in loss of inhibition.


2007 ◽  
Vol 52 (2) ◽  
pp. 586-597 ◽  
Author(s):  
Wendy C. Magee ◽  
Kathy A. Aldern ◽  
Karl Y. Hostetler ◽  
David H. Evans

ABSTRACT The acyclic nucleoside phosphonate drug (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]adenine [(S)-HPMPA], is a broad-spectrum antiviral and antiparasitic agent. Previous work has shown that the active intracellular metabolite of this compound, (S)-HPMPA diphosphate [(S)-HPMPApp], is an analog of dATP and targets DNA polymerases. However, the mechanism by which (S)-HPMPA inhibits DNA polymerases remains elusive. Using vaccinia virus as a model system, we have previously shown that cidofovir diphosphate (CDVpp), an analog of dCTP and a related antiviral agent, is a poor substrate for the vaccinia virus DNA polymerase and acts to inhibit primer extension and block 3′-to-5′ proofreading exonuclease activity. Based on structural similarities and the greater antiviral efficacy of (S)-HPMPA, we predicted that (S)-HPMPApp would have a similar, but more pronounced effect on vaccinia polymerase than CDVpp. Interestingly, we found that (S)-HPMPApp is a good substrate for the viral enzyme, exhibiting Km and V max parameters comparable to those of dATP, and certainly not behaving like CDVpp as a functional chain terminator. Metabolic experiments indicated that (S)-HPMPA is converted to (S)-HPMPApp to a much greater extent than CDV is converted to CDVpp, although both drugs cause identical effects on virus DNA replication at their 50% effective concentration. Subsequent studies showed that both compounds can be faithfully incorporated into DNA, but when CDV and (S)-HPMPA are incorporated into the template strand, both strongly inhibit trans-lesion DNA synthesis. It thus appears that nucleoside phosphonate drugs exhibit at least two different effects on DNA polymerases depending upon in what form the enzyme encounters the drug.


Author(s):  
Thomas A. Steitz ◽  
Y. Whitney Yin

The structures of DNA polymerases from different families show common features and significant differences that shed light on the ability of these enzymes to accurately copy DNA and translocate. The structure of a B family DNA polymerase from phage RB69 exhibits an active–site closing conformational change in the fingers domain upon forming a ternary complex with primer template in deoxynucleoside triphosphate. The rotation of the fingers domain α–helices by 60° upon dNTP binding is analogous to the changes seen in other families of polymerases. When the 3' terminus is bound to the editing 3' exonuclease active site, the orientation of the DNA helix axis changes by 40° and the thumb domain re–orients with the DNA. Structures of substrate and product complexes of T7 RNA polymerase, a structural homologue of T7 DNA polymerase, show that family polymerases use the rotation conformational change of the fingers domain to translocate down the DNA. The fingers opening rotation that results in translocation is powered by the release of the product pyrophosphate and also enables the Pol I family polymerases to function as a helicase in displacing the downstream non–template strand from the template strand.


Sign in / Sign up

Export Citation Format

Share Document