Identification of Three Key Residues in Substrate Recognition Site 5 of Human Cytochrome P450 3A4 by Cassette and Site-Directed Mutagenesis†

Biochemistry ◽  
1997 ◽  
Vol 36 (29) ◽  
pp. 8831-8839 ◽  
Author(s):  
You Ai He ◽  
You Qun He ◽  
Grazyna D. Szklarz ◽  
James R. Halpert
2013 ◽  
Vol 9 (1) ◽  
pp. 9-14
Author(s):  
Joohwan Kim ◽  
Songhee Han ◽  
Seunghye Choi ◽  
Hyoung-Goo Park ◽  
Young-Ran Lim ◽  
...  

2018 ◽  
Vol 19 (7) ◽  
pp. 2066 ◽  
Author(s):  
Pierre Lafite ◽  
François André ◽  
Joan Graves ◽  
Darryl Zeldin ◽  
Patrick Dansette ◽  
...  

The influence of Arginine 117 of human cytochrome P450 2J2 in the recognition of ebastine and a series of terfenadone derivatives was studied by site-directed mutagenesis. R117K, R117E, and R117L mutants were produced, and the behavior of these mutants in the hydroxylation of ebastine and terfenadone derivatives was compared to that of wild-type CYP2J2. The data clearly showed the importance of the formation of a hydrogen bond between R117 and the keto group of these substrates. The data were interpreted on the basis of 3D homology models of the mutants and of dynamic docking of the substrates in their active site. These modeling studies also suggested the existence of a R117-E222 salt bridge between helices B’ and F that would be important for maintaining the overall folding of CYP2J2.


2015 ◽  
Vol 71 (2) ◽  
pp. 283-292
Author(s):  
Juan Zhang ◽  
Yi-Hu Yang ◽  
Yong-Liang Jiang ◽  
Cong-Zhao Zhou ◽  
Yuxing Chen

The L,D-carboxypeptidase DacB plays a key role in the remodelling ofStreptococcus pneumoniaepeptidoglycan during cell division. In order to decipher its substrate-binding properties and catalytic mechanism, the 1.71 Å resolution crystal structure of DacB fromS. pneumoniaeTIGR4 is reported. Structural analyses in combination with comparisons with the recently reported structures of DacB fromS. pneumoniaeD39 and R6 clearly demonstrate that DacB adopts a zinc-dependent carboxypeptidase fold and belongs to the metallopeptidase M15B subfamily. In addition, enzymatic activity assays further confirm that DacB indeed acts as an L,D-carboxypeptidase towards the tetrapeptide L-Ala-D-iGln-L-Lys-D-Ala of the peptidoglycan stem, withKmandkcatvalues of 2.84 ± 0.37 mMand 91.49 ± 0.05 s−1, respectively. Subsequent molecular docking and site-directed mutagenesis enable the assignment of the key residues that bind to the tetrapeptide. Altogether, these findings provide structural insights into substrate recognition in the metallopeptidase M15B subfamily.


1995 ◽  
Vol 270 (10) ◽  
pp. 5014-5018 ◽  
Author(s):  
Aditya P. Koley ◽  
Jeroen T. M. Buters ◽  
Richard C. Robinson ◽  
Allen Markowitz ◽  
Fred K. Friedman

Sign in / Sign up

Export Citation Format

Share Document