New Ambipolar Organic Semiconductors. 1. Synthesis, Single-Crystal Structures, Redox Properties, and Photophysics of Phenoxazine-Based Donor−Acceptor Molecules

2008 ◽  
Vol 20 (13) ◽  
pp. 4200-4211 ◽  
Author(s):  
Yan Zhu ◽  
Abhishek P. Kulkarni ◽  
Pei-Tzu Wu ◽  
Samson A. Jenekhe
2014 ◽  
Vol 174 ◽  
pp. 281-296 ◽  
Author(s):  
Rose A. Krawczuk ◽  
Steven Tierney ◽  
William Mitchell ◽  
Joseph J. W. McDouall

We report hole mobilities obtained computationally based on both single crystal geometries and those obtained from crystal fragments optimised on a model surface. Such computational estimates can differ considerably from experimentally measured thin film mobilities. One source of this discrepancy is due to a difference in the morphology of the thin film compared with that of the crystal. Here, predictions of thin film hole mobilities based on optimised structures are given. A model surface is used to provide an inert geometric platform for the formation of an organic monolayer. The model is tested on pentacene and TIPS-pentacene for which experimental information of the surface morphology exists. The model has also been applied to four previously uninvestigated structures. Two of the compounds studied had fairly low predicted mobilities in their single crystal structures, which were vastly improved post-optimisation. This is in accord with experiment.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 182-198
Author(s):  
Dalila Rocco ◽  
Samantha Novak ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

We report the preparation and characterization of 4′-([1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (1), 4′-(4′-fluoro-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (2), 4′-(4′-chloro-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (3), 4′-(4′-bromo-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (4), and 4′-(4′-methyl-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (5), and their reactions with copper(II) acetate. Single-crystal structures of the [Cu2(μ-OAc)4L]n 1D-coordination polymers with L = 1–5 have been determined, and powder X-ray diffraction confirms that the single crystal structures are representative of the bulk samples. [Cu2(μ-OAc)4(1)]n and [Cu2(μ-OAc)4(2)]n are isostructural, and zigzag polymer chains are present which engage in π-stacking interactions between [1,1′-biphenyl]pyridine units. 1D-chains nest into one another to give 2D-sheets; replacing the peripheral H in 1 by an F substituent in 2 has no effect on the solid-state structure, indicating that bifurcated contacts (H...H for 1 or H...F for 2) are only secondary packing interactions. Upon going from [Cu2(μ-OAc)4(1)]n and [Cu2(μ-OAc)4(2)]n to [Cu2(μ-OAc)4(3)]n, [Cu2(μ-OAc)4(4)]n, and [Cu2(μ-OAc)4(5)]n·nMeOH, the increased steric demands of the Cl, Br, or Me substituent induces a switch in the conformation of the 3,2′:6′,3″-tpy metal-binding domain, and a concomitant change in dominant packing interactions to py–py and py–biphenyl face-to-face π-stacking. The study underlines how the 3,2′:6′,3″-tpy domain can adapt to different steric demands of substituents through its conformational flexibility.


Sign in / Sign up

Export Citation Format

Share Document