Intrinsic Carbon−Carbon Bond Reactivity at the Manganese Center of Oxalate Decarboxylase from Density Functional Theory

2005 ◽  
Vol 1 (5) ◽  
pp. 994-1007 ◽  
Author(s):  
Christopher H. Chang ◽  
Nigel G. J. Richards
2022 ◽  
Author(s):  
Shubin Liu ◽  
Xinjie Wan ◽  
Xin He ◽  
Meng Li ◽  
Bin Wang ◽  
...  

Designing compounds with as long carbon-carbon bond distances as possible to challenge conventional chemical wisdom is of current interest in the literature. These compounds with exceedingly long bond lengths are commonly believed to be stabilized by dispersion interactions. In this work, we build nine dimeric models with varying sizes of alkyl groups, let the carbon-carbon bond flexibly rotate, and then analyze rotation barriers with energy decomposition and information-theoretic approaches in density functional theory. Our results show that these rotations lead to extraordinarily elongated carbon-carbon bond distances and rotation barriers are synergetic and multifaceted in nature. The dominant factor contributing to the stability of the dimers with bulky alkane groups is not the dispersion force but the electrostatic interaction with steric and exchange-correlation effects playing minor yet indispensable roles.


2019 ◽  
Vol 21 (44) ◽  
pp. 24478-24488 ◽  
Author(s):  
Martin Gleditzsch ◽  
Marc Jäger ◽  
Lukáš F. Pašteka ◽  
Armin Shayeghi ◽  
Rolf Schäfer

In depth analysis of doping effects on the geometric and electronic structure of tin clusters via electric beam deflection, numerical trajectory simulations and density functional theory.


2000 ◽  
Vol 98 (20) ◽  
pp. 1639-1658 ◽  
Author(s):  
Yuan He, Jurgen Grafenstein, Elfi Kraka,

Sign in / Sign up

Export Citation Format

Share Document