scholarly journals The Synergetic and Multifaceted Nature of Carbon-Carbon Rotation Reveals the Origin of Stability for Bulky Alkane Dimers

Author(s):  
Shubin Liu ◽  
Xinjie Wan ◽  
Xin He ◽  
Meng Li ◽  
Bin Wang ◽  
...  

Designing compounds with as long carbon-carbon bond distances as possible to challenge conventional chemical wisdom is of current interest in the literature. These compounds with exceedingly long bond lengths are commonly believed to be stabilized by dispersion interactions. In this work, we build nine dimeric models with varying sizes of alkyl groups, let the carbon-carbon bond flexibly rotate, and then analyze rotation barriers with energy decomposition and information-theoretic approaches in density functional theory. Our results show that these rotations lead to extraordinarily elongated carbon-carbon bond distances and rotation barriers are synergetic and multifaceted in nature. The dominant factor contributing to the stability of the dimers with bulky alkane groups is not the dispersion force but the electrostatic interaction with steric and exchange-correlation effects playing minor yet indispensable roles.

2013 ◽  
Vol 12 (07) ◽  
pp. 1350072 ◽  
Author(s):  
FARIBA MOLLANIA ◽  
HEIDAR RAISSI

In the present work, a detailed conformational study is performed using several computational methods, including density functional theory (DFT) (B3LYP), MP2 and G2MP2 on 2-Nitroso vinyl amine (NVA) in order to determine the stability order of conformers and the various possibilities of intramolecular hydrogen bonding (HB) formation. Four conformers exhibit HB . This feature, although not being the dominant factor in energetic terms, appears to be of foremost importance to define the geometry of the molecule. According to our theoretical results, oximimine conformers are more stable than the corresponding nitrosoamine and nitrosoimine analogues. Theoretical calculations show the following order for intramolecular HB strength in the conformers of title compound: [Formula: see text] The nature of intramolecular HB has been investigated by means of the Bader theory of atoms in molecules (AIM) and natural bond orbital (NBO) analysis. Also, Harmonic Oscillator Model of Aromaticity (HOMA) index as a geometrical indicator of a local aromaticity are investigated. The influence of the solvent on the stability order of conformers and the strength of intramolecular HB is considered using the Onsager reaction field model. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies confirm that charge transfer occur within the molecule. Further verification of the obtained transition state structures were implemented via intrinsic reaction coordinate (IRC) analysis. Calculations of the 1 H NMR chemical shift at GIAO/B3LYP/6–311++G** levels of theory are also presented. The excited-state properties of intramolecular HB in H -bonded systems have been investigated theoretically using the time-dependent density functional theory (TD-DFT) method. The complete vibrational assignment for three H -bonded conformers has been made on the basis of the calculated potential energy distribution (PED).


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


Author(s):  
Nilanjan Roy ◽  
Sucharita Giri ◽  
Harshit ◽  
Partha P. Jana

Abstract The site preference and atomic ordering of the ternary Rh5Ga2As have been investigated using first-principles density functional theory (DFT). An interesting atomic ordering of two neighboring elements Ga and As reported in the structure of Rh5Ga2As by X-ray diffraction data only is confirmed by first-principles total-energy calculations. The previously reported experimental model with Ga/As ordering is indeed the most stable in the structure of Rh5Ga2As. The calculation detected that there is an obvious trend concerning the influence of the heteroatomic Rh–Ga/As contacts on the calculated total energy. Interestingly, the orderly distribution of As and Ga that is found in the binary GaAs (Zinc-blende structure type), retained to ternary Rh5Ga2As. The density of states (DOS) and Crystal Orbital Hamiltonian Population (COHP) are calculated to enlighten the stability and bonding characteristics in the structure of Rh5Ga2As. The bonding analysis also confirms that Rh–Ga/As short contacts are the major driving force towards the overall stability of the compound.


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23477-23490
Author(s):  
Yonggang Wu ◽  
Jihua Zhang ◽  
Bingwei Long ◽  
Hong Zhang

The ZnWO4 (010) surface termination stability is studied using a density functional theory-based thermodynamic approach. The stability phase diagram shows that O-Zn, DL-W, and DL-Zn terminations of ZnWO4 (010) can be stabilized.


2005 ◽  
Vol 04 (01) ◽  
pp. 117-126
Author(s):  
N. L. MA ◽  
P. WU

Using density functional theory, we predicted the solution structure of the hydrolyzed 3–aminopropyltriethoxysilane (h–APS), which is a silane coupling agent commonly used in many industrial applications. We have located five stable minima on the potential energy surface of h–APS in which four of them are "neutral", and the remaining one is zwitterionic (dipolar) in nature. Our calculations suggested that the stability of the most stable form of h–APS in water (denoted as II_N) arose from strong intramolecular OH ⋯ N hydrogen bond. The least stable form is the zwitterionic form (I_ZW), which is estimated to be over 90 kJ mol -1 less stable than II_N. The factors governing the relative stabilities of different forms are discussed.


2014 ◽  
Vol 16 (27) ◽  
pp. 14096-14107 ◽  
Author(s):  
Bhaskar Chilukuri ◽  
Ursula Mazur ◽  
K. W. Hipps

Implication of dispersion interactions on geometric, adsorption and electronic properties of porphyrin monolayer on conductive surfaces using density functional theory.


ChemInform ◽  
2010 ◽  
Vol 41 (14) ◽  
Author(s):  
Erin R. Johnson ◽  
Iain D. Mackie ◽  
Gino A. Di Labio

Sign in / Sign up

Export Citation Format

Share Document