dispersion force
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 26)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Johannes Fiedler ◽  
Bodil Holst

Abstract Fast, large area patterning of arbitrary structures down to the nanometre scale is of great interest for a range of applications including the semiconductor industry, quantum electronics, nanophotonics and others. It was recently proposed that nanometre-resolution mask lithography can be realised by sending metastable helium atoms through a binary holography mask consisting of a pattern of holes. However, these first calculations were done using a simple scalar wave approach, which did not consider the dispersion force interaction between the atoms and the mask material. To access the true potential of the idea, it is necessary to access how this interaction affects the atoms. Here we present a theoretical study of the dispersion force interaction between an atom and a dielectric membrane with a hole. We look at metastable and ground state helium, using experimentally realistic wavelengths (0.05-1 nm) and membrane thicknesses (5-50 nm). We find that the effective hole radius is reduced by around 1-7 nm for metastable helium and 0.5-3.5 nm for ground-state helium. As expected, the reduction is largest for thick membranes and slow atoms.


2022 ◽  
Author(s):  
Shubin Liu ◽  
Xinjie Wan ◽  
Xin He ◽  
Meng Li ◽  
Bin Wang ◽  
...  

Designing compounds with as long carbon-carbon bond distances as possible to challenge conventional chemical wisdom is of current interest in the literature. These compounds with exceedingly long bond lengths are commonly believed to be stabilized by dispersion interactions. In this work, we build nine dimeric models with varying sizes of alkyl groups, let the carbon-carbon bond flexibly rotate, and then analyze rotation barriers with energy decomposition and information-theoretic approaches in density functional theory. Our results show that these rotations lead to extraordinarily elongated carbon-carbon bond distances and rotation barriers are synergetic and multifaceted in nature. The dominant factor contributing to the stability of the dimers with bulky alkane groups is not the dispersion force but the electrostatic interaction with steric and exchange-correlation effects playing minor yet indispensable roles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. K. Soliman ◽  
A. F. Moustafa ◽  
H. R. Abdel El-Mageed ◽  
Omima F. Abdel-Gawad ◽  
Esraa T. Elkady ◽  
...  

AbstractA comprehensive study that combined both experimental and computational experiments was performed to evaluate the usage of organo-metal oxide nanocomposite for the elimination of disperse red 60 dye (DR) from aqueous solutions. Chitosan was modified by Schiff base to form nanoneedles chitosan-4-chloroacetophenone derivative. The derivatives were then impregnated with CeO2–CuO–Fe2O3 or CeO2–CuO–Al2O3 metal oxides to prepare a novel quarternary organo-metal oxide nanocomposite. The novel nanocomposite, chitosan-4-chloroacetophenone/CeO2–CuO–Fe2O3 (CF) and chitosan-4-chloroacetophenone/CeO2–CuO–Al2O3 (CA) are cheap and effective nano adsorbents that can be used for the uptake of DR from aqueous solution. The CF and CA nano-composites were characterized using different techniques. Moreover, the effect of adsorption parameters (initial DR concentration, time of contact, pH, temperature, and adsorbent mass) as well as CA and CF reusability tests were performed. Langmuir adsorption isotherm and pseudo-second-order kinetics models were best fitted with the adsorption process. The maximum amount of DR adsorbed was 100 mg/g on CF and CA at pH 2 and 4, respectively with a physical spontaneous, and exothermic adsorption process. Monte Carlo (MC) simulation studies indicated the adsorption of DR molecule on the CF and CA surfaces following a parallel mode in most of all studied configurations, confirming the strong interactions between the DR and surfaces atoms of CF and CA. The molecular structure analysis of DR dye adsorbed on the surface of CF and CA indicated that the adsorption process related to Van der Waals dispersion force. Consequently, this helps to trap DR dye molecules on the surface of CF and CA (i.e., physical adsorption), which supports our experimental results.


2021 ◽  
Author(s):  
jian Liu ◽  
Melissa Bollmeyer ◽  
Yujeong Kim ◽  
Dengmengfei Xiao ◽  
Samantha N. Macmillan ◽  
...  

Mononuclear Pd(I) species are putative intermediates in Pd-catalyzed reactions, but our knowledge about them is limited due to difficulties in accessing them. Herein, we report the isolation of a Pd(I) amido complex, [(BINAP)Pd(NHArTrip )] (BINAP = 2,2′- bis(diphenylphosphino)-1,1′-binaphthalene, ArTrip = 2,6-bis(2’,4’,6’-triisopropylphenyl)phenyl), from the reaction of (BINAP)PdCl2 with LiNHArTrip. This Pd(I) amido species has been characterized by X-ray crystallography, electron paramagnetic resonance, and multi-edge Pd Xray absorption spectroscopy. Theoretical study revealed that, while the 3-electron-2-center π interaction between Pd and N in the Pd(I) complex imposes severe Pauli repulsion in its Pd–N bond, pronounced attractive inter-ligand dispersion force aids its stabilization. In accord with its electronic features, reactions of homolytic Pd–N bond cleavage and deprotonation of primary amines are observed on the Pd(I) amido complex.


2021 ◽  
Author(s):  
jian Liu ◽  
Melissa Bollmeyer ◽  
Yujeong Kim ◽  
Dengmengfei Xiao ◽  
Samantha N. Macmillan ◽  
...  

Mononuclear Pd(I) species are putative intermediates in Pd-catalyzed reactions, but our knowledge about them is limited due to difficulties in accessing them. Herein, we report the isolation of a Pd(I) amido complex, [(BINAP)Pd(NHArTrip )] (BINAP = 2,2′- bis(diphenylphosphino)-1,1′-binaphthalene, ArTrip = 2,6-bis(2’,4’,6’-triisopropylphenyl)phenyl), from the reaction of (BINAP)PdCl2 with LiNHArTrip. This Pd(I) amido species has been characterized by X-ray crystallography, electron paramagnetic resonance, and multi-edge Pd Xray absorption spectroscopy. Theoretical study revealed that, while the 3-electron-2-center π interaction between Pd and N in the Pd(I) complex imposes severe Pauli repulsion in its Pd–N bond, pronounced attractive inter-ligand dispersion force aids its stabilization. In accord with its electronic features, reactions of homolytic Pd–N bond cleavage and deprotonation of primary amines are observed on the Pd(I) amido complex.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abraham Ogwu ◽  
T. H. Darma

AbstractCopper oxide films hold substantial promise as anti-stiction coatings in micro-electromechanical (MEMS) devices and with shrinking dimensions on the nanometre scale on nano electromechanical (NEMS) devices. The Hamaker constant will play a very significant role in understanding stiction and tribology in these devices. We used an approximate but sufficiently accurate form of the Lifshitz theory using the multiple oscillator model to calculate the Hamakers constant of symmetric copper oxide thin films based on experimentally obtained dielectric data in the wavelength range 190-850 nm using spectroscopic ellipsometry. We also used the Tabor–Winterton approximation (TWA) and Surface energy measurements to determine the Hamaker constant. There was better agreement in the Hamaker constant values obtained by the limited Lifshitz theory and TWA approach than with the Surface energy approach. The difference is explained through the influence of surface roughness on the surface energy using extensions of the stochastic KPZ growth model and the Family-Vicsek scaling relation and rigorous treatment of the Cassie-Baxter and Wenzel models as optimisations of a surface free energy functional linking roughness and surface tension. The dominance of the Cu2O phase in the films and of the London dispersion force on the surface of the films was previously confirmed by FTIR Cu(I)–O vibrational mode observation and XPS Cu 2p3/2 binding energy peak and its fitted satellites. The use of the limited Lifshitz theory and ellipsometry data would seem to provide a suitable best first approximation for determining the Hamaker constant of predominantly dispersive anti-stiction coatings in technologically important MEMS/NEMS devices.


Sign in / Sign up

Export Citation Format

Share Document