Refractive Index Determination of Transparent Polymers: Experimental Setup for Multi-Wavelength Determination and Calculation at Specific Frequencies Using Group Contribution Theory

2006 ◽  
Vol 83 (12) ◽  
pp. 1867 ◽  
Author(s):  
Jay Dlutowski ◽  
Andres M. Cardenas-Valencia ◽  
David Fries ◽  
Larry Langebrake
Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 90
Author(s):  
Mariano Barbieri ◽  
Deborah Katia Pallotti ◽  
Mario Siciliani de Cumis ◽  
Luigi Santamaria Amato

Frequency modulated continuous wave (FMCW) laser detection and ranging is a technique for absolute distance measurements with high performances in terms of resolution, non-ambiguity range, accuracy and fast detection. It is based on a simple experimental setup, thus resulting in cost restraint with potential wide spread, not only limited to research institutions. The technique has been widely studied and improved both in terms of experimental setup by absolute reference or active stabilization and in terms of data analysis. Very recently a multi-wavelength approach has been exploited, demonstrating high precision and non ambiguity range. The variability of refractive index along the path was not taken into account with consequent degradation of range accuracy. In this work we developed a simple model able to take into account refractive index effect in multi-wavelength FMCW measurement. We performed a numerical simulation in different atmospheric conditions of temperature, pressure, humidity and CO2 concentration showing a net improvement of range accuracy when refractive index modeling is used.


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 41
Author(s):  
Najat Andam ◽  
Siham Refki ◽  
Hidekazu Ishitobi ◽  
Yasushi Inouye ◽  
Zouheir Sekkat

The determination of optical constants (i.e., real and imaginary parts of the complex refractive index (nc) and thickness (d)) of ultrathin films is often required in photonics. It may be done by using, for example, surface plasmon resonance (SPR) spectroscopy combined with either profilometry or atomic force microscopy (AFM). SPR yields the optical thickness (i.e., the product of nc and d) of the film, while profilometry and AFM yield its thickness, thereby allowing for the separate determination of nc and d. In this paper, we use SPR and profilometry to determine the complex refractive index of very thin (i.e., 58 nm) films of dye-doped polymers at different dye/polymer concentrations (a feature which constitutes the originality of this work), and we compare the SPR results with those obtained by using spectroscopic ellipsometry measurements performed on the same samples. To determine the optical properties of our film samples by ellipsometry, we used, for the theoretical fits to experimental data, Bruggeman’s effective medium model for the dye/polymer, assumed as a composite material, and the Lorentz model for dye absorption. We found an excellent agreement between the results obtained by SPR and ellipsometry, confirming that SPR is appropriate for measuring the optical properties of very thin coatings at a single light frequency, given that it is simpler in operation and data analysis than spectroscopic ellipsometry.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pavel Malakhovsky ◽  
Dmitry Murausky ◽  
Dmitry Guzatov ◽  
Sergey Gaponenko ◽  
Mikhail Artemyev

Abstract We examined systematically how self-assembled monolayers (SAMs) of different mercaptoacids affect the spectral shift of the localized surface plasmon resonance in silver nanoplates and nanospheres. We observed a clear trend in the magnitude of a redshift with a molecular length or the SAM thickness within a homologous series of aliphatic mercaptoacids: the thicker shell the stronger the red shift. Using classic Mie theory for plasmonic core-dielectric shell spheres and oblate spheroids we developed the method for determination of a pseudo-refractive index in SAM of different molecules and obtained a good correlation with the reference refractive indices for bulk long-chain aliphatic acids, but only in case of silver nanoplates. Calculations for silver core–shell nanospheres gave overestimated values of refractive index perhaps due to restrictions of Mie theory on the minimum particle size.


2020 ◽  
Vol 8 ◽  
pp. 100065
Author(s):  
Laurent Lamaignère ◽  
Guido Toci ◽  
Barbara Patrizi ◽  
Matteo Vannini ◽  
Angela Pirri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document