doped polymers
Recently Published Documents


TOTAL DOCUMENTS

400
(FIVE YEARS 18)

H-INDEX

41
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5828
Author(s):  
Konstantina Zafeiropoulou ◽  
Christina Kostagiannakopoulou ◽  
Anna Geitona ◽  
Xenia Tsilimigkra ◽  
George Sotiriadis ◽  
...  

The objective of the present study is the assessment of the impact performance and the concluded thermal conductivity of epoxy resin reinforced by layered Graphene Nano-Platelets (GNPs). The two types of used GNPs have different average thicknesses, <4 nm for Type 1 and 9–12 nm for Type 2. Graphene-based polymers containing different GNP loading contents (0.5, 1, 5, 10, 15 wt.%) were developed by using the three-roll mill technique. Thermo-mechanical (Tg), impact tests and thermal conductivity measurements were performed to evaluate the effect of GNPs content and type on the final properties of nano-reinforced polymers. According to the results, thinner GNPs were proven to be more promising in all studied properties when compared to thicker GNPs of the same weight content. More specifically, the glass transition temperature of nano-reinforced polymers remained almost unaffected by the GNPs inclusion. Regarding the impact tests, it was found that the impact resistance of the doped materials increased up to 50% when 0.5 wt.% Type 1 GNPs were incorporated within the polymer. Finally, the thermal conductivity of doped polymers with 15 wt.% GNPs showed a 130% enhancement over the reference material.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qi-Mian Koh ◽  
Cindy Guanyu Tang ◽  
Mervin Chun-Yi Ang ◽  
Kim-Kian Choo ◽  
Qiu-Jing Seah ◽  
...  

AbstractIt is widely thought that the water-oxidation reaction limits the maximum work function to about 5.25 eV for hole-doped semiconductors exposed to the ambient, constrained by the oxidation potential of air-saturated water. Here, we show that polymer organic semiconductors, when hole-doped, can show work functions up to 5.9 eV, and yet remain stable in the ambient. We further show that de-doping of the polymer is not determined by the oxidation of bulk water, as previously thought, due to its general absence, but by the counter-balancing anion and its ubiquitously hydrated complexes. The effective donor levels of these species, representing the edge of the ‘chemical’ density of states, can be depressed to about 6.0 eV below vacuum level. This can be achieved by raising the oxidation potential for hydronium generation, using large super-acid anions that are themselves also stable against oxidation. In this way, we demonstrate that poly(fluorene-alt-triarylamine) derivatives with tethered perfluoroalkyl-sulfonylimidosulfonyl anions can provide ambient solution-processability directly in the ultrahigh-workfunction hole-doped state to give films with good thermal stability. These results lay the path for design of soft materials for battery, bio-electronic and thermoelectric applications.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1962
Author(s):  
Mahboubeh Nabavinia ◽  
Baishali Kanjilal ◽  
Noahiro Fujinuma ◽  
Amos Mugweru ◽  
Iman Noshadi

To address the issue of global warming and climate change issues, recent research efforts have highlighted opportunities for capturing and electrochemically converting carbon dioxide (CO2). Despite metal doped polymers receiving widespread attention in this respect, the structures hitherto reported lack in ease of synthesis with scale up feasibility. In this study, a series of mesoporous metal-doped polymers (MRFs) with tunable metal functionality and hierarchical porosity were successfully synthesized using a one-step copolymerization of resorcinol and formaldehyde with Polyethyleneimine (PEI) under solvothermal conditions. The effect of PEI and metal doping concentrations were observed on physical properties and adsorption results. The results confirmed the role of PEI on the mesoporosity of the polymer networks and high surface area in addition to enhanced CO2 capture capacity. The resulting Cobalt doped material shows excellent thermal stability and promising CO2 capture performance, with equilibrium adsorption of 2.3 mmol CO2/g at 0 °C and 1 bar for at a surface area 675.62 m2/g. This mesoporous polymer, with its ease of synthesis is a promising candidate for promising for CO2 capture and possible subsequent electrochemical conversion.


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 41
Author(s):  
Najat Andam ◽  
Siham Refki ◽  
Hidekazu Ishitobi ◽  
Yasushi Inouye ◽  
Zouheir Sekkat

The determination of optical constants (i.e., real and imaginary parts of the complex refractive index (nc) and thickness (d)) of ultrathin films is often required in photonics. It may be done by using, for example, surface plasmon resonance (SPR) spectroscopy combined with either profilometry or atomic force microscopy (AFM). SPR yields the optical thickness (i.e., the product of nc and d) of the film, while profilometry and AFM yield its thickness, thereby allowing for the separate determination of nc and d. In this paper, we use SPR and profilometry to determine the complex refractive index of very thin (i.e., 58 nm) films of dye-doped polymers at different dye/polymer concentrations (a feature which constitutes the originality of this work), and we compare the SPR results with those obtained by using spectroscopic ellipsometry measurements performed on the same samples. To determine the optical properties of our film samples by ellipsometry, we used, for the theoretical fits to experimental data, Bruggeman’s effective medium model for the dye/polymer, assumed as a composite material, and the Lorentz model for dye absorption. We found an excellent agreement between the results obtained by SPR and ellipsometry, confirming that SPR is appropriate for measuring the optical properties of very thin coatings at a single light frequency, given that it is simpler in operation and data analysis than spectroscopic ellipsometry.


2021 ◽  
Author(s):  
Zhiming Liang ◽  
Hyun Ho Choi ◽  
Xuyi Luo ◽  
Tuo Liu ◽  
Ashkan Abtahi ◽  
...  

Author(s):  
Yu Yamashita ◽  
Samik Jhulki ◽  
Dinesh Bhardwaj ◽  
Elena Longhi ◽  
Shohei Kumagai ◽  
...  

Chemical doping is a key process for controlling the electronic properties of molecular semiconductors, including their conductivity and work function. A common limitation of n-doped polymers is their instability under...


2021 ◽  
Vol 9 (1) ◽  
pp. 173-180
Author(s):  
Wentao Li ◽  
Baowen Wang ◽  
Tiezheng Miao ◽  
Jiaxiang Liu ◽  
Guorui Fu ◽  
...  

Despite the cost-effective and large-area scalable advantages of NIR-PLEDs based on iridium(iii)-complex-doped polymers, the intrinsic phase-separation issue leading to inferior device performance is difficult to address.


2020 ◽  
Vol 142 (36) ◽  
pp. 15340-15348 ◽  
Author(s):  
Yang Lu ◽  
Zi-Di Yu ◽  
Yi Liu ◽  
Yi-Fan Ding ◽  
Chi-Yuan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document