Indoor ozone and nitrogen dioxide: a potential pathway to the generation of nitrate radicals, dinitrogen pentoxide, and nitric acid indoors

1992 ◽  
Vol 26 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Charles J. Weschler ◽  
Michael Brauer ◽  
Petros Koutrakis
2010 ◽  
Vol 10 (10) ◽  
pp. 4741-4756 ◽  
Author(s):  
E. Remsberg ◽  
M. Natarajan ◽  
B. T. Marshall ◽  
L. L. Gordley ◽  
R. E. Thompson ◽  
...  

Abstract. The quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) nitric acid (HNO3) and nitrogen dioxide (NO2) profiles and distributions of 1978/1979 are described after their processing with an updated, Version 6 (V6) algorithm and subsequent archival in 2002. Estimates of the precision and accuracy of both of those species are developed and provided herein. The character of the V6 HNO3 profiles is relatively unchanged from that of the earlier LIMS Version 5 (V5) profiles, except in the upper stratosphere where the interfering effects of CO2 are accounted for better with V6. The accuracy of the retrieved V6 NO2 is also significantly better in the middle and upper stratosphere, due to improvements in its spectral line parameters and in the reduced biases for the accompanying V6 temperature and water vapor profiles. As a result of these important updates, there is better agreement with theoretical calculations for profiles of the HNO3/NO2 ratio, day-to-night NO2 ratio, and with estimates of the production of NO2 in the mesosphere and its descent to the upper stratosphere during polar night. In particular, the findings for middle and upper stratospheric NO2 should also be more compatible with those obtained from more recent satellite sensors because the effects of the spin-splitting of the NO2 lines are accounted for now with the LIMS V6 algorithm. The improved precisions and more frequent retrievals of the LIMS profiles along their orbit tracks provide for better continuity and detail in map analyses of these two species on pressure surfaces. It is judged that the chemical effects of the oxides of nitrogen on ozone can be studied quantitatively throughout the stratosphere with the LIMS V6 data.


1954 ◽  
Vol 46 (12) ◽  
pp. 2541-2546 ◽  
Author(s):  
W. H. Corcoran ◽  
H. H. Reamer ◽  
B. H. Sage

2018 ◽  
Author(s):  
Hui Yun ◽  
Weihao Wang ◽  
Tao Wang ◽  
Men Xia ◽  
Chuan Yu ◽  
...  

Abstract. Nitrate (NO3−) has become a major component of fine particulate matter (PM2.5) during hazy days in China. However, the role of the heterogeneous reactions of dinitrogen pentoxide (N2O5) in nitrate formation is not well constrained. In January 2017, a severe haze event occurred in the Pearl River Delta (PRD) of southern China during which high levels of PM2.5 (~ 400 μg m−3) and O3 (~ 160 ppbv) were observed at a semi-rural site (Heshan) in the western PRD. Nitrate concentrations were up to 108 μg m−3 (1 h time resolution), and the contribution of nitrate to PM2.5 reached nearly 40 %. Concurrent increases in NO3− and ClNO2 (with a maximum value of 8.3 ppbv in 1 min time resolution) were observed in the first several hours after sunset, indicating an intense N2O5 heterogeneous uptake on aerosols. The formation potential of NO3− via N2O5 heterogeneous reactions was estimated to be 39.7 to 77.3 μg m−3 in the early hours (3 to 6 h) after sunset based on the measurement data, which could completely explain the measured increase in the NO3− concentration during the same time period. Daytime production of nitric acid from the gas-phase reaction of OH + NO2 was calculated with a chemical box model built using the Master Chemical Mechanism (MCM v3.3.1) and constrained by the measurement data. The integrated nocturnal nitrate formed via N2O5 chemistry was comparable to or even higher than the nitric acid formed during the daytime. This study confirms that N2O5 heterogeneous chemistry was a significant source of aerosol nitrate during hazy days in southern China.


2020 ◽  
Vol 20 (6) ◽  
pp. 3663-3668
Author(s):  
Ellis Remsberg ◽  
V. Lynn Harvey ◽  
Arlin Krueger ◽  
Larry Gordley ◽  
John C. Gille ◽  
...  

Abstract. The Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) instrument operated from 25 October 1978 through 28 May 1979. This note focuses on its Version 6 (V6) data and indications of ozone loss in the lower stratosphere of the Southern Hemisphere subpolar region during the last week of October 1978. We provide profiles and maps that show V6 ozone values of only 2 to 3 ppmv at 46 hPa within the edge of the polar vortex near 60∘ S from late October through mid-November 1978. There are also low values of V6 nitric acid (∼3 to 6 ppbv) and nitrogen dioxide (< 1 ppbv) at the same locations, indicating that conditions were suitable for a chemical loss of Antarctic ozone some weeks earlier. These “first light” LIMS observations provide the earliest space-based view of conditions within the lower stratospheric ozone layer of the southern polar region in springtime.


1997 ◽  
Vol 144 (6) ◽  
pp. 2032-2044 ◽  
Author(s):  
J. E. Harrar ◽  
R. Quong ◽  
L. P. Rigdon ◽  
R. R. McGuire

2002 ◽  
Vol 36 (36-37) ◽  
pp. 5729-5740 ◽  
Author(s):  
A.Preszler Prince ◽  
J.L. Wade ◽  
V.H. Grassian ◽  
P.D. Kleiber ◽  
M.A. Young

Sign in / Sign up

Export Citation Format

Share Document