antarctic ozone
Recently Published Documents


TOTAL DOCUMENTS

421
(FIVE YEARS 62)

H-INDEX

52
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Qing-Bin Lu

Abstract This paper reveals a new ozone hole that exists in the lower stratosphere over the tropics (30°N-30°S) across the seasons since the 1980s, where an ozone hole is defined as an area of ozone loss larger than 25% compared with the undisturbed atmosphere. The depth of this all-season tropical ozone hole is comparable to that of the well-known springtime ozone hole over Antarctica, while its area is about seven times that of the latter. At the center of the deepest tropical or Antarctic ozone hole, approximately 80% of the normal ozone value is depleted, whereas annual mean ozone depletion in the lower stratosphere over the tropics due to the coldest temperature is about 1.6 times that over Antarctica and is about 7.7 times that over the Arctic. The whole-year ozone hole over the tropics could cause a serious global concern as it can lead to increases in ground-level ultraviolet radiation and affect 50% of Earth's surface area, which is home to approximately 50% of the world's population. Moreover, since ozone loss is well-known to lead to stratospheric cooling, the presence of the all-season tropical ozone hole and the seasonal polar ozone holes is equivalent to the formation of three ‘temperature holes’ in the global lower stratosphere. These findings will play a far-reaching role in understanding fundamental atmospheric processes and global climate change.


MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 487-502
Author(s):  
R. P. KANE

Since 1976, and more so since 1985, the Antarctic ozone level has suffered considerable depletion (termed as Antarctic ozone hole), attributed to the destructive effects of CFC compounds leaking into the atmosphere from man-made gadgets. The 12-month running means of South Pole Dobson ozone (monthly means, upto 1999 end only) were subjected to spectral analysis, which showed considerable, significant amplitudes for QBO (Quasi-biennial, 2-3 years) and QTO (Quasi-triennial, 3-4 years) oscillations, with a total range of 20-30 DU. When subtracted from the original values, a fairly smooth variation was seen, with a decrease from ~260 DU in 1986 to ~230 DU in 1996 (~12% decrease in 12-month running means), and an almost steady level thereafter. Thus, the net ozone variation at South Pole consists of two parts, (i) a long-term monotonically downward trend upto 1996 and a steady level thereafter and            (ii) a superposed QBO-QTO oscillation. The chemical destruction effect is not likely to disappear soon, and may even increase if greenhouse effects, major volcanic eruptions or enhanced stratospheric cooling intervene. If the long-term level   (i) remains steady, an extrapolation of the QBO-QTO patterns indicates that the ozone level is due for an increase from about 1999 end to about 2001 beginning. The purpose of the present analysis is to point out that, if such an increase of 20-30 DU occurs, it should not be misinterpreted as due to a decrease in chemical destruction, which scientists are eagerly awaiting due to the indication of a reduction in the halogen load in recent years due to adherence to the Montreal Protocol. After one or two years (in 2002), the extrapolated QBO-QTO oscillation may bring down the ozone level back again to the 1999 end level, and the apparent recovery may turn out to be a false signal.


MAUSAM ◽  
2022 ◽  
Vol 45 (1) ◽  
pp. 23-28
Author(s):  
R.P. KANE

The evolution o f the Antarct ic ozone hole is illustrated fo r 1985·1989 and 1990 springs.A detailed study for 1986.19 89 and 1990 events indicates that the evolution. which occurs in ea rly October . isfairly unifo rm over the South Pole. Hence the fluctuations observed at Syowa, McMurdo and Palmer duringthis period arc mostly due to the vortex \''3.11 passing in and out over these periferial loca t ions. However, later inNovember when the hole is dissipating, the vortex may shift from the South Pole in any direction and may alsocome back or intensify on Sou th Pole before finally disappearing. At South Pole. the recovery started by Octoberend in 19S5. 19R6 and 1988 but later in 19R7 (November end), 1989 {November beginning) and 1990 (Novemberend •.


MAUSAM ◽  
2021 ◽  
Vol 52 (2) ◽  
pp. 397-412
Author(s):  
R. P. KANE ◽  
C. CASICCIA

Using data from TOMS!Nimbus7 and Meteor 3, the evolution of Antarctic ozone holes during the southern springs of 1992, 1993, 1994 was studied. At the South Pole, the evolution was mostly smooth, a steady decrease up to about September end and a steady recovery up to about December end. At latitudes near 65° S, the ozone levels (~220 DU) at different latitudes and longitudes showed fluctuations compatible with passing of a noncircular (oval) ! vortex boundary (two ends of a major axis of an ellipse), with a rotation period of -15 days (full rotation period ~30 days) in 1992 and ~17 days (full rotation period ~34 days) in 1994, different from the 2-3 weeks reported by earlier workers. However, the rotation was not with uniform speeds. During a full rotation, the speeds varied sometimes from almost zero (stalling) for a few days to ~20° per day during other intervals. Outside the oval boundary, often there were, depletions with spacings of a few (5-8) days, extending to lower latitudes up to ~30° S, indicating corrugations in the oval boundary, probably due to the effects of synoptic disturbances on total ozone through tropopause pressure changes and/or I ozone mini- holes caused by anticyclonic tropospheric forcing under the southern polar vortex. The shape of the ozone hole changed from elliptic to almost circular and vice versa within a few days and the area also changed by ~15-20%. Thus, the ozone hole was twisting, turning and pulsating, probably due to a varying strength of the wave number 2 component of the wind system prevailing there.


MAUSAM ◽  
2021 ◽  
Vol 66 (2) ◽  
pp. 311-312
Author(s):  
R.P. KANE

MAUSAM ◽  
2021 ◽  
Vol 50 (2) ◽  
pp. 203-210
Author(s):  
V. S. TIWARI

Regular ozone profile measurement over Antarctica has been made by India Meteorological Department since 1987 at Dakshin Gangotri and later at Maitri (70.7°S, 11.7°E) since 1990 with the help of Indian electro-chemical ozone sonde. Surface ozone measurement was also started at Dakshin Gangotri since 1989 and later at Maitri. Ozone sonde data at Dakshin Gangotri and Maitri have been analysed and ozone hole structure has been studied in detail. The drastic decrease in ozone amount is clearly seen between 100 hPa to 30 hPa layer reaching near zero value. Incidently this is the layer where highest ozone concentration occurs during other months except September-October. The ozone hole has been quite severe during 1994-95 with increase in area and depth. During 1996 the Antarctic ozone hole was also similar to previous years. An interesting feature of the 1995 event was the persistence of ozone hole through November & December. Stratospheric temperature changes during 1995 also support that the cold core vortex during 1995 was very cold and persisted up to November.


MAUSAM ◽  
2021 ◽  
Vol 48 (3) ◽  
pp. 443-446
Author(s):  
S.K. PESIHN ◽  
P. RAJESH RAO ◽  
S.K. SRIVASTAV

ABSTRACT. Profiles from a series of balloon borne ozonesonde ascents are used to chart the development of the Antarctic depletion over Maitri in the austral spring of 1992. The vertical structure of the ozone layer is discussed, including the presence of stratification, which occurs at all stages of development. The main feature of 1992 ozonesonde flights is depletion of 97% in the months of September and October between 15-23 km, which is unique.    


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Minde An ◽  
Luke M. Western ◽  
Daniel Say ◽  
Liqu Chen ◽  
Tom Claxton ◽  
...  

AbstractWith the successful implementation of the Montreal Protocol on Substances that Deplete the Ozone Layer, the atmospheric abundance of ozone-depleting substances continues to decrease slowly and the Antarctic ozone hole is showing signs of recovery. However, growing emissions of unregulated short-lived anthropogenic chlorocarbons are offsetting some of these gains. Here, we report an increase in emissions from China of the industrially produced chlorocarbon, dichloromethane (CH2Cl2). The emissions grew from 231 (213–245) Gg yr−1 in 2011 to 628 (599–658) Gg yr−1 in 2019, with an average annual increase of 13 (12–15) %, primarily from eastern China. The overall increase in CH2Cl2 emissions from China has the same magnitude as the global emission rise of 354 (281−427) Gg yr−1 over the same period. If global CH2Cl2 emissions remain at 2019 levels, they could lead to a delay in Antarctic ozone recovery of around 5 years compared to a scenario with no CH2Cl2 emissions.


Author(s):  
K. A. Stone ◽  
S. Solomon ◽  
D. E. Kinnison ◽  
Michael J. Mills
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document