Integrated Exposure and Dose Modeling and Analysis System. 3. Deposition of Inhaled Particles in the Human Respiratory Tract

2001 ◽  
Vol 35 (18) ◽  
pp. 3727-3734 ◽  
Author(s):  
Mihalis Lazaridis ◽  
David M. Broday ◽  
Øystein Hov ◽  
Panos G. Georgopoulos
1985 ◽  
Vol 58 (1) ◽  
pp. 223-229 ◽  
Author(s):  
F. J. Wilson ◽  
F. C. Hiller ◽  
J. D. Wilson ◽  
R. C. Bone

Theoretical models of particle deposition in the respiratory tract predict high fractional deposition for particles of less than 0.1 micron, but there are few confirming experimental data for those predictions. We have measured the deposition fraction of a nonhygroscopic aerosol in the human respiratory tract. The aerosol had a count mean diameter of 0.044 micron SD of 1.93, as measured with an electrical aerosol analyzer, and was produced from a 0.01% solution of bis(2-ethylhexyl) sebacate using a condensation generator. Subjects inhaled the aerosol using a controlled respiratory pattern of 1 liter tidal volume, 12/min. Deposition was calculated as the difference in concentration between inhaled and exhaled aerosol of five size fractions corrected for system deposition and dead-space constants. Three deposition studies were done on each of five normal male volunteers. Means (+/- SE) for the five size fractions were 0.024 micron, 0.71 +/- 0.06; 0.043 micron, 0.62 +/- 0.06; 0.075 micron, 0.53 +/- 0.05; 0.13 micron, 0.44 +/- 0.04; and 0.24 micron, 0.37 +/- 0.06. These data demonstrate that deposition of inhaled particles in the 0.024- to 0.24-micron size range is high and increases with decreasing size. These observations agree with and validate predictions of mathematical models.


AIHAJ ◽  
1979 ◽  
Vol 40 (12) ◽  
pp. 1055-1066 ◽  
Author(s):  
E. AUSTIN ◽  
J. BROCK ◽  
E. WISSLER

Author(s):  
Digamber Singh

The human respiratory tract has a complex airflow pattern. If any obstruction is present in the airways, it will change the airflow pattern and deposit particles inside the airways. This is the concern of breath quality (inspired air), and it is decreasing due to the unplanned production of material goods. This is a primary cause of respiratory illness (asthma, cancer, etc.). Therefore, it is important to identify the flow characteristics in the human airways and airways with a glomus tumour with particle deposition. A numerical diagnosis is presented with an asymmetric unsteady-state light breathing condition (10 l/min). An in vitro human respiratory tract model has been reconstructed using computed tomography scan techniques and an artificial glomus tumour developed 2 cm above a carina on the posterior wall of the trachea. The transient flow characteristics are numerically simulated with a realizable (low Reynolds number) k–ɛ turbulence model. The flow disturbance is captured around the tumour, which influenced the upstream and downstream of the flow. The flow velocity pattern, wall shear stress and probable area of inflammation (hotspot) due to suspended particle deposition are determined, which may assist doctors more effectively in aerosol therapy and prosthetics of human airways illness.


2004 ◽  
Vol 86 (4) ◽  
pp. 337-352 ◽  
Author(s):  
Eduardo B. Farfán ◽  
Eun Young Han ◽  
Wesley E. Bolch ◽  
ChulHaeng Huh ◽  
Thomas E. Huston ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document