airflow pattern
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 26)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Haiguo Yin ◽  
Yanyan Li ◽  
Da Zhang ◽  
Yuekun Han ◽  
Jiali Wang ◽  
...  

2021 ◽  
Vol 34 ◽  
pp. 157-170
Author(s):  
Siti A. Ismail ◽  
Azmi Yahya ◽  
Ahmad S. Mat Su ◽  
Norhayu Asib ◽  
Anas M. Mustafah

The sprayed chemicals by drones have been widely reported to be off-targeted and not uniformly distributed. This study aims to evaluate the drone blade’s revolutions per minute (RPM) and its travelling pattern at different payloads and flight speeds. The obtained results were used to relate to the potential effects on the quantity and quality of spraying. In a test flight on an area of 1000 m2, a hexacopter, Advansia A1 was tested in 6 different flying paths of 56 m length. The drone was set to fly at 5 payloads (10, 8, 6, 4, and 2 kg) and 4 flying speeds (i.e. 1, 3, 5, and 7 m.s-1) combinations. The drone travelling pattern and individual rotor blade rpm at each payload-flying speed combinations were analysed. From the result, the RPM of each rotor blade were found to decrease by 14 to 20% as the payload was decreased from 10kg to 0kg. Thus, in actual spraying activities, the changes in RPM could produce a downwash airflow pattern that continually varies from starting point up to the finishing point that would effect on pesticide's distribution along the flying path. On drone travelling pattern, at higher flying speed, a much lesser time and distance was required for the drone to be stabilized to the targeted speed. This relates to the longer time needed by the drone to accelerate and decelerate. The average real speed of the drone was notably reduced to 0.96, 2.72, 3.83 and 4.05  m.s-1, in which, it was, far less than the initial specified speed set at 1, 3, 5, and 7  m.s-1, respectively. The drone flying pattern during spraying needs to be considered for application rate determination to avoid for the crops to be under or over pesticide applications. The obtained finding is remarkably critical and useful in ensuring the efficiency of agricultural chemical spraying activities using drone.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4880
Author(s):  
Enrico Chinchella ◽  
Arianna Cauteruccio ◽  
Mattia Stagnaro ◽  
Luca G. Lanza

The airflow velocity pattern generated by a widely used non-catching precipitation gauge (the Thies laser precipitation monitor or LPM) when immersed in a wind field is investigated using computational fluid dynamics (CFD). The simulation numerically solves the unsteady Reynolds-averaged Navier–Stokes (URANS) equations and the setup is validated against dedicated wind tunnel measurements. The adopted k-ω shear stress transport (SST) turbulence model closely reproduces the flow pattern generated by the complex, non-axisymmetric outer geometry of the instrument. The airflow pattern near the measuring area varies with the wind direction, the most intense recirculating flow and turbulence being observed when the wind blows from the back of the instrument. Quantitative parameters are used to discuss the magnitude of the airflow perturbations with respect to the ideal configuration where the instrument is transparent to the wind. The generated airflow pattern is expected to induce some bias in operational measurements, especially in strong wind conditions. The proposed numerical simulation framework provides a basis to develop correction curves for the wind-induced bias of non-catching gauges, as a function of the undisturbed wind speed and direction.


2021 ◽  
Vol 13 (14) ◽  
pp. 7931
Author(s):  
Behrouz Pirouz ◽  
Stefania Anna Palermo ◽  
Seyed Navid Naghib ◽  
Domenico Mazzeo ◽  
Michele Turco ◽  
...  

The purpose of heating, ventilation, and air conditioning (HVAC) systems are to create optimum thermal comfort and appropriate indoor air quality (IAQ) for occupants. Air ventilation systems can significantly affect the health risk in indoor environments, especially those by contaminated aerosols. Therefore, the main goal of the study is to analyze the indoor airflow patterns in the heating, ventilation, and air conditioning (HVAC) systems and the impact of outlets/windows. The other goal of this study is to simulate the trajectory of the aerosols from a human sneeze, investigate the impact of opening windows on the number of air changes per hour (ACH) and exhibit the role of dead zones with poor ventilation. The final goal is to show the application of computational fluid dynamics (CFD) simulation in improving the HVAC design, such as outlet locations or airflow rate, in addition to the placement of occupants. In this regard, an extensive literature review has been combined with the CFD method to analyze the indoor airflow patterns, ACH, and the role of windows. The airflow pattern analysis shows the critical impact of inflow/outflow and windows. The results show that the CFD model simulation could exhibit optimal placement and safer locations for the occupants to decrease the health risk. The results of the discrete phase simulation determined that the actual ACH could be different from the theoretical ACH as the short circuit and dead zones affect the ACH.


Author(s):  
Digamber Singh

The human respiratory tract has a complex airflow pattern. If any obstruction is present in the airways, it will change the airflow pattern and deposit particles inside the airways. This is the concern of breath quality (inspired air), and it is decreasing due to the unplanned production of material goods. This is a primary cause of respiratory illness (asthma, cancer, etc.). Therefore, it is important to identify the flow characteristics in the human airways and airways with a glomus tumour with particle deposition. A numerical diagnosis is presented with an asymmetric unsteady-state light breathing condition (10 l/min). An in vitro human respiratory tract model has been reconstructed using computed tomography scan techniques and an artificial glomus tumour developed 2 cm above a carina on the posterior wall of the trachea. The transient flow characteristics are numerically simulated with a realizable (low Reynolds number) k–ɛ turbulence model. The flow disturbance is captured around the tumour, which influenced the upstream and downstream of the flow. The flow velocity pattern, wall shear stress and probable area of inflammation (hotspot) due to suspended particle deposition are determined, which may assist doctors more effectively in aerosol therapy and prosthetics of human airways illness.


2021 ◽  
Vol 196 ◽  
pp. 107790
Author(s):  
Jianchao Ma ◽  
Hua Qian ◽  
Peter V. Nielsen ◽  
Li Liu ◽  
Yuguo Li ◽  
...  

Author(s):  
Spyridon Efthymiopoulos ◽  
Hector Altamirano ◽  
Yasemin Didem Aktas

Internal wall insulation is one of the few, possibly, the only feasible solution to efficiently reduce heat losses through the external walls of buildings where the application of external insulation is not an option, for example, in conservation areas. However, the application of this intervention may lead to unintended consequences, such as moisture accumulation and mould growth. Currently, no international standards and regulations exist to evaluate these hazards via non-destructive inspections. Air sampling through impaction and culture-based analysis was suggested in previous research as a potential non-disruptive methodology for interstitial mould testing. The method requires the perforation of the inner side of a wall and the creation of airflow through the operation of a pump, to allow the collection of particles from the confined space of interest. The present study aimed to assess the location of perforations and their effect on the airflow created and the airflow pattern variations due to changes in the airflow velocity at the outlet. Results regarding airflow features such as the turbulence intensity, dynamic pressure and volume-averaged velocity were also extracted and discussed. Practical application: The rapid changes in climate and net-zero emissions targets call for major improvements of the existing building stock towards a more sustainable future. The installation of internal wall insulation is one of the few and might be the only feasible solution for the efficient reduction of heat losses through uninsulated walls. However, this intervention might lead to moisture accumulation and thus moisture-related problems such as mould growth. This study aims to build upon previous work on interstitial mould growth assessment and contribute to the development of a well-defined testing protocol for building professionals.


2021 ◽  
Author(s):  
Majid Bayatian ◽  
Khosro Ashrafi ◽  
Zahra Amiri ◽  
Elahe Jafari

Abstract Viruses can be transmitted in indoor environments. Important factors in Indoor Air Quality (IAQ) are air velocity, relative humidity, temperature, and airflow pattern and Computational fluid dynamics (CFD) can use for IAQ assessment. The objective of this study is to CFD simulation in the living room to the prediction of the air pattern and air velocity. A computational fluid dynamic model was applied for airflow pattern and air velocity simulation. For simulation, GAMBIT, FLUENT, and CFD post software were used as preprocessing, processing, and post-processing, respectively. CFD validation was carried out by comparing the computed data with the experimental measurements. The final mesh number was set to 1,416,884 elementary cells and SIMPLEC algorithm was used for pressure-velocity coupling. PERSTO, and QUIK schemes have been used for the pressure terms, and the other variables, respectively. Simulations were carried out in ACH equals 3, 6 and 8 in four lateral walls. The maximum error and root mean square error from the air velocity were 14% and 0.10, respectively. Terminal settling velocity and relaxation time were equal to 0.302 ×10− 2 m/s and 0.0308 ×10− 2 s for 10 µm diameter particles, respectively. The stopping distance was 0.0089m and 0.011m for breathing and talking, respectively. The maximum of mean air velocity is in scenario 4 with ACH = 8 that mean air velocity is equal to 0.31 in 1.1m height, respectively. The results of this study showed that avoiding family gatherings is necessary for exposure control and suitable airflow and pattern can be improving indoor air conditions.


2021 ◽  
Vol 402 ◽  
pp. 123564
Author(s):  
Long Xu ◽  
Yongsheng Wang ◽  
Fusheng Zha ◽  
Qiong Wang ◽  
Bo Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document