Estimation of Organic and Elemental Carbon Emitted from Wood Burning in Traditional and Improved Cookstoves Using Controlled Cooking Test

2015 ◽  
Vol 49 (6) ◽  
pp. 3958-3965 ◽  
Author(s):  
Pooja Arora ◽  
Suresh Jain

2009 ◽  
Vol 9 (5) ◽  
pp. 1521-1535 ◽  
Author(s):  
S. Szidat ◽  
M. Ruff ◽  
N. Perron ◽  
L. Wacker ◽  
H.-A. Synal ◽  
...  

Abstract. Particulate matter was collected at an urban site in Göteborg (Sweden) in February/March 2005 and in June/July 2006. Additional samples were collected at a rural site for the winter period. Total carbon (TC) concentrations were 2.1–3.6 μg m−3, 1.8–1.9 μg m−3, and 2.2–3.0 μg m−3 for urban/winter, rural/winter, and urban/summer conditions, respectively. Elemental carbon (EC), organic carbon (OC), water-insoluble OC (WINSOC), and water-soluble OC (WSOC) were analyzed for 14C in order to distinguish fossil from non-fossil emissions. As wood burning is the single major source of non-fossil EC, its contribution can be quantified directly. For non-fossil OC, the wood-burning fraction was determined independently by levoglucosan and 14C analysis and combined using Latin-hypercube sampling (LHS). For the winter period, the relative contribution of EC from wood burning to the total EC was >3 times higher at the rural site compared to the urban site, whereas the absolute concentrations of EC from wood burning were elevated only moderately at the rural compared to the urban site. Thus, the urban site is substantially more influenced by fossil EC emissions. For summer, biogenic emissions dominated OC concentrations most likely due to secondary organic aerosol (SOA) formation. During both seasons, a more pronounced fossil signal was observed for Göteborg than has previously been reported for Zurich, Switzerland. Analysis of air mass origin using back trajectories suggests that the fossil impact was larger when local sources dominated, whereas long-range transport caused an enhanced non-fossil signal. In comparison to other European locations, concentrations of levoglucosan and other monosaccharide anhydrides were low for the urban and the rural site in the area of Göteborg during winter.



2008 ◽  
Vol 8 (4) ◽  
pp. 16255-16289 ◽  
Author(s):  
S. Szidat ◽  
M. Ruff ◽  
L. Wacker ◽  
H.-A. Synal ◽  
M. Hallquist ◽  
...  

Abstract. Particulate matter was collected at an urban site in Göteborg (Sweden) in February/March 2005 and in June/July 2006. Additional samples were collected at a rural site for the winter period. Elemental carbon (EC), organic carbon (OC), water-insoluble OC (WINSOC), and water-soluble OC (WSOC) were analyzed for 14C in order to distinguish fossil from non-fossil emissions. As wood burning is the single major source of non-fossil EC, its contribution can be quantified directly. For non-fossil OC, the wood burning fraction was determined independently by levoglucosan and 14C analysis and combined using Latin-hypercube sampling (LHS). For the winter period, the relative contribution of EC from wood burning to the total EC was >3 times higher at the rural site compared to the urban site, whereas the absolute concentrations of EC from wood burning were comparable at both sites. Thus, the urban site is substantially more influenced by fossil EC emissions. For summer, biogenic emissions dominated OC concentrations most likely due to secondary organic aerosol (SOA) formation. During both seasons, a more pronounced fossil signal was observed for Göteborg than has previously been reported for Zurich, Switzerland. Analysis of air mass origin using back trajectories suggests that the fossil impact was larger when local sources dominated, whereas long-range transport caused an enhanced non-fossil signal. In comparison to other European locations, concentrations of levoglucosan and other monosaccharide anhydrides were low for the urban and the rural site in the area of Göteborg during winter. The comparison of summer and winter results provides insight into the annual cycle of anthropogenic vs. biogenic contributions to the atmospheric aerosol.





1861 ◽  
Vol 4 (12) ◽  
pp. 185-185
Keyword(s):  


Author(s):  
A. D. Nikitin ◽  
S. E. Shcheklein ◽  
Yu. E. Nemikhin ◽  
U. Sh. Murodov ◽  
N. B. Holov


Tellus B ◽  
2011 ◽  
Vol 63 (3) ◽  
Author(s):  
Borgar Aamaas ◽  
Carl Egede Bøggild ◽  
Frode Stordal ◽  
Terje Berntsen ◽  
Kim Holmén ◽  
...  


2021 ◽  
pp. 000370282110123
Author(s):  
Hemalaxmi Rajavelu ◽  
Nilesh J Vasa ◽  
Satyanarayanan Seshadri

A benchtop Laser-Induced Breakdown Spectroscopy (LIBS) is demonstrated to determine the elemental carbon content present in raw coal used for combustion in power plants. The spectral intensities of molecular CN and C2 emission are measured together with the atomic carbon (C) and other inorganic elements (Si, Fe, Mg, Al, Ca, Na, and K) in the LIBS spectrum of coal. The emission persistence time of C2 molecule emission is measured from the coal plasma generated by a nanosecond laser ablation with a wavelength of 266 nm in the Ar atmosphere. The emission persistence time of molecular C2 emission along with the spectral intensities of major ash elements (Fe, Si, Al, and Ca) and carbon emissions (atomic C, molecular CN, and C2) shows a better relationship with the carbon wt% of different coal samples. The calibration model to measure elemental carbon (wt%) is developed by combining the spectral characteristics (Spectral intensity) and the temporal characteristics (Emission persistence time of C2 molecule emission). The temporal characteristic studies combined with the spectroscopic data in the PLSR (Partial Least Square Regression) model has resulted in an improvement in the root mean square error of validation (RMSEV), and the relative standard deviation (RSD) is reduced from 10.86% to 4.12% and from 11.32% to 6.04%, respectively.





Sign in / Sign up

Export Citation Format

Share Document