Effect of Emissions Control Strategies on the Size and Composition Distribution of Urban Particulate Air Pollution

1999 ◽  
Vol 33 (1) ◽  
pp. 177-189 ◽  
Author(s):  
Michael J. Kleeman ◽  
Glen R. Cass
Author(s):  
V. Hatch ◽  
R. Hauser ◽  
G. B. Hayes ◽  
R. Stearns ◽  
D. Christiani ◽  
...  

Modern environmental air pollution control strategies are designed to reduce airborne particulate mass by reducing the size of effluent particles to less than lOOnm. Recently, Dockery et al have clearly shown that fine-particulate air pollution (<2.5(μm) can be directly related to excess mortality in humans. Although ultrafine metal fumes (<100nm) have been shown to produce adverse effects in occupational settings, little is known of the extent to which they contribute to ambient environmental particulate air pollution. The purpose of this study is to determine to what extent ultrafine particles are present in lung macrophages of healthy human volunteers studied by electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI).Lung macrophages were obtained by bronchoalveolar lavage from 14 current non-smokers, 7 of whom work at an oil-fired power plant but were not considered to have significant occupational exposure, 4 of whom were welders at the power plant with the possibility of metal fume (ultrafine particulate) exposure, and 3 of whom were university employees with no known occupational or environmental exposure.


2021 ◽  
Vol 117 (5/6) ◽  
Author(s):  
Luckson Muyemeki ◽  
Roelof Burger ◽  
Stuart J. Piketh ◽  
Brigitte Language ◽  
Johan P. Beukes ◽  
...  

The Vaal Triangle Airshed Priority Area (VTAPA), like other priority areas in South Africa, has an air pollution problem. Understanding the sources contributing to air pollution in this priority area will assist in the selection and implementation of appropriate control strategies. For this study, aerosol samples in the coarse (PM10-2.5) and fine (PM2.5) fraction were collected at four sites in the VTAPA during summer/autumn, winter, and spring. The contributing sources were identified and characterised based on the elemental and ionic compositions obtained through X-ray fluorescence and ion chromatography analysis. The highest seasonal median concentrations of PM10-2.5 (116 μg/m3) and PM2.5 (88 μg/m3) were observed in Sharpeville during the winter. The lowest median concentrations of PM10-2.5 (25 μg/m3) and PM2.5 (18 μg/m3) were detected in Zamdela during the summer/autumn period. At all sites, there was a high abundance of crustal elements in PM10-2.5 and a dominance of coal and biomass combustion-related elements in PM2.5. The Positive Matrix Factorisation receptor model identified dust-related and secondary aerosols as the major contributing sources of PM10-2.5. PM2.5 contributions were predominantly from coal burning for Sebokeng and Sharpeville and from industry, wood and biomass burning, and secondary aerosols for Kliprivier and Zamdela. The results of this study identify the main sources contributing to particulate air pollution in the VTAPA and provide local authorities with valuable information for decision-making.


2000 ◽  
Vol 12 (sup3) ◽  
pp. 233-244 ◽  
Author(s):  
W. MacNee, X. Y. Li, P. Gilmour, K. Do

2021 ◽  
pp. 103052
Author(s):  
Phuong T.M. Tran ◽  
Max G. Adam ◽  
Kwok Wai Tham ◽  
Stefano Schiavon ◽  
Jovan Pantelic ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Luyi Li ◽  
Dayu Hu ◽  
Wenlou Zhang ◽  
Liyan Cui ◽  
Xu Jia ◽  
...  

Abstract Background The adverse effects of particulate air pollution on heart rate variability (HRV) have been reported. However, it remains unclear whether they differ by the weight status as well as between wake and sleep. Methods A repeated-measure study was conducted in 97 young adults in Beijing, China, and they were classified by body mass index (BMI) as normal-weight (BMI, 18.5–24.0 kg/m2) and obese (BMI ≥ 28.0 kg/m2) groups. Personal exposures to fine particulate matter (PM2.5) and black carbon (BC) were measured with portable exposure monitors, and the ambient PM2.5/BC concentrations were obtained from the fixed monitoring sites near the subjects’ residences. HRV and heart rate (HR) were monitored by 24-h Holter electrocardiography. The study period was divided into waking and sleeping hours according to time-activity diaries. Linear mixed-effects models were used to investigate the effects of PM2.5/BC on HRV and HR in both groups during wake and sleep. Results The effects of short-term exposure to PM2.5/BC on HRV were more pronounced among obese participants. In the normal-weight group, the positive association between personal PM2.5/BC exposure and high-frequency power (HF) as well as the ratio of low-frequency power to high-frequency power (LF/HF) was observed during wakefulness. In the obese group, personal PM2.5/BC exposure was negatively associated with HF but positively associated with LF/HF during wakefulness, whereas it was negatively correlated to total power and standard deviation of all NN intervals (SDNN) during sleep. An interquartile range (IQR) increase in BC at 2-h moving average was associated with 37.64% (95% confidence interval [CI]: 25.03, 51.51%) increases in LF/HF during wakefulness and associated with 6.28% (95% CI: − 17.26, 6.15%) decreases in SDNN during sleep in obese individuals, and the interaction terms between BC and obesity in LF/HF and SDNN were both statistically significant (p <  0.05). The results also suggested that the effects of PM2.5/BC exposure on several HRV indices and HR differed in magnitude or direction between wake and sleep. Conclusions Short-term exposure to PM2.5/BC is associated with HRV and HR, especially in obese individuals. The circadian rhythm of HRV should be considered in future studies when HRV is applied. Graphical abstract


2021 ◽  
pp. 101053952110317
Author(s):  
Bin Jalaludin ◽  
Frances L. Garden ◽  
Agata Chrzanowska ◽  
Budi Haryanto ◽  
Christine T. Cowie ◽  
...  

Smoke from forest fires can reach hazardous levels for extended periods of time. We aimed to determine if there is an association between particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) and living in a forest fire–prone province and cognitive function. We used data from the Indonesian Family and Life Survey. Cognitive function was assessed by the Ravens Colored Progressive Matrices (RCPM). We used regression models to estimate associations between PM2.5 and living in a forest fire–prone province and cognitive function. In multivariable models, we found very small positive relationships between PM2.5 levels and RCPM scores (PM2.5 level at year of survey: β = 0.1%; 95% confidence interval [CI] = 0.01% to 0.19%). There were no differences in RCPM scores for children living in forest fire–prone provinces compared with children living in non-forest fire–prone provinces (mean difference = −1.16%, 95% CI = −2.53% to 0.21%). RCPM scores were lower for children who had lived in a forest fire–prone province all their lives compared with children who lived in a non-forest fire–prone province all their life (β = −1.50%; 95% CI = −2.94% to −0.07%). Living in a forest fire–prone province for a prolonged period of time negatively affected cognitive scores after adjusting for individual factors.


Sign in / Sign up

Export Citation Format

Share Document