secondary aerosols
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 44)

H-INDEX

21
(FIVE YEARS 5)

2021 ◽  
Vol 31 (2) ◽  
Author(s):  
Nicola M. Walton ◽  
Stuart J. Piketh ◽  
Pieter Van Zyl ◽  
Willy Maenhaut ◽  
Roelof Burger ◽  
...  

The South African Highveld is recognised as a region having significant negative ambient air quality impacts with its declaration as an Air Quality Priority Area in 2007. Such areas require the implementation of specific air quality intervention strategies to address the air quality situation. A greater understanding of the composition of the atmospheric aerosol loading and the contributing air pollution sources will assist with the formulation and implementation of these strategies. This study aims to assess the composition and sources of the aerosol loading in Embalenhle and Kinross located on the Highveld. Fine (PM2.5) and coarse (PM2.5-10) aerosol samples were collected during summer and winter, which were quantified using the gravimetric method. Wavelength-Dispersive X-Ray Fluorescence (WD-XRF) and Ion Chromatography (IC) analysis were used to determine the chemical composition of aerosols. Mean PM2.5 concentrations in Embalenhle and Kinross ranged from 16.3 to 34.1 µg/m3 during winter and 7.4 to 19.0 µg/m3 during summer. Mean PM10-2.5 concentrations ranged from 10.3 to 114 µg/m3 during winter and 5.9 to 11.2 µg/m3 during summer. Si, Al, S, Na (winter only), Ca (summer only), SO42- and NH4+ were the most abundant species in PM2.5 during both seasons. In PM10-2.5, Si, Al, Na (winter only), SO42- and F- were the most abundant species during both seasons. The elements S and Ca also had high abundances at Embalenhle and Kinross, respectively, during summer. Source apportionment was undertaken using Positive Matrix Factorisation, which identified five sources. Dust, secondary aerosols, domestic combustion, wood and biomass burning, and industry were determined to be the contributing sources. Any measures to mitigate particulate air pollution on the Highveld should consider these key sources.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1686
Author(s):  
Iasonas Stavroulas ◽  
Georgios Grivas ◽  
Eleni Liakakou ◽  
Panayiotis Kalkavouras ◽  
Aikaterini Bougiatioti ◽  
...  

Port cities are affected by a wide array of emissions, including those from the shipping, road transport, and residential sectors; therefore, the characterization and apportionment of such sources in a high temporal resolution is crucial. This study presents measurements of fine aerosol chemical composition in Piraeus, one of the largest European ports, during two monthly periods (winter vs. summer) in 2018–2019, using online instrumentation (Aerosol Chemical Speciation Monitor—ACSM, 7-λ aethalometer). PMF source apportionment was performed on the ACSM mass spectra to quantify organic aerosol (OA) components, while equivalent black carbon (BC) was decomposed to its fossil fuel combustion and biomass burning (BB) fractions. The combined traffic, shipping and, especially, residential emissions led to considerably elevated submicron aerosol levels (22.8 μg m−3) in winter, which frequently became episodic late at night under stagnant conditions. Carbonaceous compounds comprised the major portion of this submicron aerosol in winter, with mean OA and BC contributions of 61% (13.9 μg m−3) and 16% (3.7 μg m−3), respectively. The contribution of BB to BC concentrations was considerable and spatially uniform. OA related to BB emissions (fresh and processed) and hydrocarbon-like OA (from vehicular traffic and port-related fossil fuel emissions including shipping) accounted for 37% and 30% of OA, respectively. In summer, the average PM1 concentration was significantly lower (14.8 μg m−3) and less variable, especially for the components associated with secondary aerosols (such as OA and sulfate). The effect of the port sector was evident in summer and maintained BC concentrations at high levels (2.8 μg m−3), despite the absence of BB and improved atmospheric dispersion. Oxygenated components yielded over 70% of OA in summer, with the more oxidized secondary component of regional origin being dominant (41%) despite the intensity of local sources, in the Piraeus environment. In general, with respect to local sources that can be the target of mitigation policies, this work highlights the importance of port-related activities but also reveals the extensive wintertime impact of residential wood burning. While a separation of the BB source is feasible, more research is needed on how to disentangle the short-term effects of different fossil-fuel combustion sources.


2021 ◽  
Vol 21 (23) ◽  
pp. 17243-17265
Author(s):  
Sara Marie Blichner ◽  
Moa Kristina Sporre ◽  
Terje Koren Berntsen

Abstract. Historically, aerosols of anthropogenic origin have offset some of the warming from increased atmospheric greenhouse gas concentrations. The strength of this negative aerosol forcing, however, is highly uncertain – especially the part originating from cloud–aerosol interactions. An important part of this uncertainty originates from our lack of knowledge about pre-industrial aerosols and how many of these would have acted as cloud condensation nuclei (CCN). In order to simulate CCN concentrations in models, we must adequately model secondary aerosols, including new particle formation (NPF) and early growth, which contributes a large part of atmospheric CCN. In this study, we investigate the effective radiative forcing (ERF) from cloud–aerosol interactions (ERFaci) with an improved treatment of early particle growth, as presented in Blichner et al. (2021). We compare the improved scheme to the default scheme, OsloAero, which are both embedded in the atmospheric component of the Norwegian Earth System Model v2 (NorESM2). The improved scheme, OsloAeroSec, includes a sectional scheme that treats the growth of particles from 5–39.6 nm in diameter, which thereafter inputs the particles to the smallest mode in the pre-existing modal aerosol scheme. The default scheme parameterizes the growth of particles from nucleation up to the smallest mode, a process that can take several hours. The explicit treatment of early growth in OsloAeroSec, on the other hand, captures the changes in atmospheric conditions during this growth time in terms of air mass mixing, transport, and condensation and coagulation. We find that the ERFaci with the sectional scheme is −1.16 W m−2, which is 0.13 W m−2 weaker compared to the default scheme. This reduction originates from OsloAeroSec producing more particles than the default scheme in pristine, low-aerosol-concentration areas and fewer NPF particles in high-aerosol areas. We find, perhaps surprisingly, that NPF inhibits cloud droplet activation in polluted and/or high-aerosol-concentration regions because the NPF particles increase the condensation sink and reduce the growth of the larger particles which may otherwise activate. This means that in these high-aerosol regions, the model with the lowest NPF – OsloAeroSec – will have the highest cloud droplet activation and thus more reflective clouds. In pristine and/or low-aerosol regions, however, NPF enhances cloud droplet activation because the NPF particles themselves tend to activate. Lastly, we find that sulfate emissions in the present-day simulations increase the hygroscopicity of secondary aerosols compared to pre-industrial simulations. This makes NPF particles more relevant for cloud droplet activation in the present day than the pre-industrial atmosphere because increased hygroscopicity means they can activate at smaller sizes.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1529
Author(s):  
Chun Xiong ◽  
Shaocai Yu ◽  
Xue Chen ◽  
Zhen Li ◽  
Yibo Zhang ◽  
...  

Water soluble inorganic ions (WSIIs) are important components in PM2.5 and could strongly affect the acidity and hygroscopicity of PM2.5. In order to achieve the seasonal characteristics and determine the potential sources of WSIIs in PM2.5 in Hangzhou, online systems were used to measure hourly mass concentrations of WSIIs (SO42–, NO3–, NH4+, Cl–, Na+, K+, Ca2+ and Mg2+) as well as PM2.5, NO2 and SO2 at an urban site for one month each season (May, August, October, December) in 2017. Results showed that the hourly mass concentrations of PM2.5 during the whole campaign varied from 1 to 292 μg·m−3 with the mean of 56.03 μg·m−3. The mean mass concentration of WSIIs was 26.49 ± 20.78 μg·m−3, which contributed 48.28% to averaged PM2.5 mass. SNA (SO42–, NO3– and NH4+) were the most abundant ions in PM2.5 and on average, they comprised 41.57% of PM2.5 mass. PM2.5, NO2, SO2 and WSIIs showed higher mass concentrations in December, possibly due to higher energy consumption emissions, unfavorable meteorological factors (e.g., lower wind speed and temperature) and regional transport. Results from PCA models showed that secondary aerosols and vehicle emissions were the dominant sources of WSIIs in the observations. Our findings highlight the importance of stronger controls on precursor (e.g., SO2 and NO2) emissions in Hangzhou, and show that industrial areas should be controlled at local and regional scales in the future.


Author(s):  
Giobertti Morantes ◽  
Jean Carlos González ◽  
Gladys Rincón

AbstractBetween June and September 2018, particulate matter (PM) samples were taken in the Sartenejas Valley, southeast of Greater Caracas, Venezuela. The aim was to evaluate the morphology and the elemental chemical composition of particulate matter and establish possible emission sources during the rainy season. Functional groups were identified by FTIR spectroscopic analysis, and morphology and elemental composition were obtained by SEM–EDX analysis. The sampling period coincided with a Sahara dust storm. The SEM–EDX and FTIR analyses found evidence of mineral elements related to soil and crustal origins. The presence of C-rich or C-containing aerosols is related to biological sources or mineral carbon. SEM–EDX analysis of PM revealed the following particle groups: geogenic, metallic, C-rich, and secondary aerosols. Quantitative source appointments through principal component analysis (PCA) corroborated PM sources, including soil dust, sea salts, and reacted aerosols. According to the authors’ knowledge, this study represents the first report to indicate that an episode of African dust could influence the particles collected in an intertropical continental sector in Venezuela, South America.


2021 ◽  
Vol 14 (7) ◽  
pp. 4989-4999
Author(s):  
Esther Borrás ◽  
Luis A. Tortajada-Genaro ◽  
Milagro Ródenas ◽  
Teresa Vera ◽  
Thomas Speak ◽  
...  

Abstract. Multi-oxygenated volatile organic compounds are important markers of air pollution and precursors of ozone and secondary aerosols in both polluted and remote environments. Herein, their accurate determination was enhanced. The approach was based on an automated system for active sampling and on-fibre derivatization coupled with the gas chromatography–mass spectrometry (GC–MS) technique. The method capability was determined for different compound families, such as aldehydes, ketones, α-dicarbonyls, hydroxy-aldehydes, hydroxy-ketones, and carboxylic acids. A good accuracy (<7 %) was demonstrated from the results compared to Fourier-transform infrared spectroscopy (FTIR). Limits of detection (LODs) of 6–100 pptV were achieved with a time resolution lower than 20 min. The developed method was successfully applied to the determination of multi-oxygenated compounds in air samples collected during an intercomparison campaign (EUROCHAMP-2020 project). Also, its capability and accuracy for atmospheric monitoring was demonstrated in an isoprene ozonolysis experiment. Both were carried out in the high-volume outdoor atmospheric simulation chambers (EUPHORE, 200 m3). In summary, our developed technique offers near-real-time monitoring with direct sampling, which is an advantage in terms of handling and labour time for a proper quantification of trace levels of atmospheric multi-oxygenated compounds.


Author(s):  
Henri Diémoz ◽  
Tiziana Magri ◽  
Giordano Pession ◽  
Claudia Tarricone ◽  
Ivan Karl Friedrich Tombolato ◽  
...  

The effect of COVID-19 confinement regulations on air quality in the northwestern Alps is here assessed based on measurements at five valley sites in different environmental contexts. Surface concentrations of nitrogen oxides, ozone, particle matter, together with size, chemical, and optical (light absorption) aerosol properties, complemented by observations along the vertical column are considered. The 2020 concentration anomalies relative to previous years&rsquo; average are compared with the output of a machine learning algorithm accounting for weather effects and a chemical transport model, their difference being within 10&ndash;20 %. Even in the relatively pristine environment of the Alps, the &laquo;lockdown effect&raquo; is well discernible, both in the early confinement phase and in late 2020, especially in NOx concentrations (NO decreasing by &gt;80 % and NO2 by &gt;50 %). While ozone shows little variation, secondary aerosols increase due to enhanced transport from the neighbouring Po basin and coarse particles decrease due to missing resuspension by traffic and, in the city, to the shutdown of a steel mill. The NO2 vertical column density decreases by &gt;20 %, whereas the aerosol profile is mainly influenced by large-scale dynamics, except a shallow layer about 500 m thick possibly sensitive to curtailed surface emissions.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chao He ◽  
Song Hong ◽  
Hang Mu ◽  
Peiyue Tu ◽  
Lu Yang ◽  
...  

A severe haze pollution incident caused by unfavorable weather conditions and a northern air mass occurred in eastern, northern, northwestern, and southwestern China from January 15 to January 22, 2018. To comparatively analyze variations in PM2.5 pollution, hourly monitoring data and 24 h meteorological data were collected. Air quality observations revealed large spatiotemporal variation in PM2.5 concentrations in Handan, Zhengzhou, Xi’an, Yuncheng, Chengdu, Xiangyang, and Jinan. The daily mean PM2.5 concentrations ranged from 111.35 to 227.23 μg·m−³, with concentration being highest in Zhengzhou. Hourly mean PM2.5 concentration presented multiple U-shaped curves, with higher values at night and lower values during the day. The ratios of PM2.5 to PM10 were large in target cities and the results of multiscale geographic weighted regression model (MGWR) and Pearson correlation coefficients showed that PM2.5 had a significant positive or negative correlation with PM10, CO, NO2, and SO2. The concentration of PM2.5 was closely related to the combustion of fossil fuels and other organic compounds, indicating the large contribution of secondary aerosols to PM2.5 concentrations. The analysis of meteorological conditions showed that low temperature, low wind speed, and high relative humidity could aggravate the accumulation of regional pollutants in winter. Northwestern trajectory clusters were predominant contributions except in Jinan, and the highest PM2.5 concentrations in target cities were associated with short trajectory clusters in winter. The potential sources calculated by Weight Potential Source Contribution Function (WPSCF) and Weight Concentration-Weighted Trajectory (WCWT) models were similar and the highest values of the WPSCF (>0.5) and the WCWT (>100 μg·m−³) were mainly distributed in densely populated, industrial, arid, and semiarid regions.


Sign in / Sign up

Export Citation Format

Share Document