Structure Resolution of Ba5Al3F19and Investigation of Fluorine Ion Dynamics by Synchrotron Powder Diffraction, Variable-Temperature Solid-State NMR, and Quantum Computations

2011 ◽  
Vol 50 (6) ◽  
pp. 2644-2653 ◽  
Author(s):  
Charlotte Martineau ◽  
Franck Fayon ◽  
Matthew R. Suchomel ◽  
Mathieu Allix ◽  
Dominique Massiot ◽  
...  
2019 ◽  
Vol 31 (5) ◽  
pp. 1704-1714 ◽  
Author(s):  
Matthew T. Dunstan ◽  
David M. Halat ◽  
Matthew L. Tate ◽  
Ivana Radosavljevic Evans ◽  
Clare P. Grey

1991 ◽  
Vol 52 (10) ◽  
pp. 1235-1241 ◽  
Author(s):  
Hermann Gies ◽  
Bernd Marler ◽  
Colin Fyfe ◽  
George Kokotailo ◽  
Y. Feng ◽  
...  

2018 ◽  
Author(s):  
Matthew Dunstan ◽  
David M. Halat ◽  
Matthew Tate ◽  
Ivana Radosavljevic Evans ◽  
Clare Grey

<p>In this study, we employ a multinuclear, variable-temperature NMR spectroscopy approach to characterise and measure oxide ionic motion in the V- and P-substituted bismuth oxide materials Bi0.913V0.087O1.587, Bi0.852V0.148O1.648 and Bi0.852P0.148O1.648, previously shown to have excellent ionic conduction properties. Two main <sup>17</sup>O NMR resonances are distinguished for each material, corresponding to O in the Bi–O and V–O/P–O sublattices. Using variable-temperature (VT) measurements ranging from room temperature to 923 K, the ionic motion experienced by these different sites has then been characterised, with coalescence of the two environments in the V-substituted materials clearly indicating a conduction mechanism facilitated by exchange between the two sublattices. The lack of this coalescence in the P-substituted material indicates a different mechanism, confirmed by <sup>17</sup>O T1 (spin-lattice relaxation) NMR experiments to be driven purely by vacancy motion in the Bi–O sublattice. <sup>51</sup>V and <sup>31</sup>P VT-NMR experiments show high rates of tetrahedral rotation even at room temperature, increasing with heating. An additional VO4 environment appears in <sup>17</sup>O and <sup>51</sup>V NMR spectra of the more highly V-substituted Bi0.852V0.148O1.648, which we ascribe to differently distorted VO4 tetrahedral units that disrupt the overall ionic motion, consistent both with linewidth analysis of the 17O VT-NMR spectra and experimental results of Kuang <i>et al.</i> showing a lower oxide ionic conductivity in this material compared to Bi0.913V0.087O1.587 (<i>Chem. Mater. </i>2012, 24, 2162). This study shows solid-state NMR is particularly well suited to understanding connections between local structural features and ionic mobility, and can quantify the evolution of oxide-ion dynamics with increasing temperature.</p>


CrystEngComm ◽  
2013 ◽  
Vol 15 (43) ◽  
pp. 8763 ◽  
Author(s):  
Saad Sene ◽  
Boris Bouchevreau ◽  
Charlotte Martineau ◽  
Christel Gervais ◽  
Christian Bonhomme ◽  
...  

2018 ◽  
Author(s):  
Matthew Dunstan ◽  
David M. Halat ◽  
Matthew Tate ◽  
Ivana Radosavljevic Evans ◽  
Clare Grey

<p>In this study, we employ a multinuclear, variable-temperature NMR spectroscopy approach to characterise and measure oxide ionic motion in the V- and P-substituted bismuth oxide materials Bi0.913V0.087O1.587, Bi0.852V0.148O1.648 and Bi0.852P0.148O1.648, previously shown to have excellent ionic conduction properties. Two main <sup>17</sup>O NMR resonances are distinguished for each material, corresponding to O in the Bi–O and V–O/P–O sublattices. Using variable-temperature (VT) measurements ranging from room temperature to 923 K, the ionic motion experienced by these different sites has then been characterised, with coalescence of the two environments in the V-substituted materials clearly indicating a conduction mechanism facilitated by exchange between the two sublattices. The lack of this coalescence in the P-substituted material indicates a different mechanism, confirmed by <sup>17</sup>O T1 (spin-lattice relaxation) NMR experiments to be driven purely by vacancy motion in the Bi–O sublattice. <sup>51</sup>V and <sup>31</sup>P VT-NMR experiments show high rates of tetrahedral rotation even at room temperature, increasing with heating. An additional VO4 environment appears in <sup>17</sup>O and <sup>51</sup>V NMR spectra of the more highly V-substituted Bi0.852V0.148O1.648, which we ascribe to differently distorted VO4 tetrahedral units that disrupt the overall ionic motion, consistent both with linewidth analysis of the 17O VT-NMR spectra and experimental results of Kuang <i>et al.</i> showing a lower oxide ionic conductivity in this material compared to Bi0.913V0.087O1.587 (<i>Chem. Mater. </i>2012, 24, 2162). This study shows solid-state NMR is particularly well suited to understanding connections between local structural features and ionic mobility, and can quantify the evolution of oxide-ion dynamics with increasing temperature.</p>


2019 ◽  
Vol 23 (11n12) ◽  
pp. 1346-1354 ◽  
Author(s):  
Danielle Laurencin ◽  
Pascal G. Yot ◽  
Christel Gervais ◽  
Yannick Guari ◽  
Sébastien Clément ◽  
...  

Porphyrin nanorods were prepared by ion-association between free-base meso 5,10,15,20-tetrakis-(4-[Formula: see text]-methylpyridinium)porphyrin cations and tetraphenylborate anions. The nanorods have variable lengths (up to a few micrometers long) and diameters ([Formula: see text]50–500 nm). Their structure at the molecular level was elucidated by combining multinuclear solid state NMR spectroscopy, synchrotron X-ray powder diffraction and DFT calculations.


2017 ◽  
Vol 121 (40) ◽  
pp. 21877-21886 ◽  
Author(s):  
Matthew T. Dunstan ◽  
Hannah Laeverenz Schlogelhofer ◽  
John M. Griffin ◽  
Matthew S. Dyer ◽  
Michael W. Gaultois ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document