Microalgae Capture of CO2from Actual Flue Gas Discharged from a Combustion Chamber

2011 ◽  
Vol 50 (10) ◽  
pp. 6496-6502 ◽  
Author(s):  
Fang-Fang Li ◽  
Zhong-Hua Yang ◽  
Rong Zeng ◽  
Gai Yang ◽  
Xu Chang ◽  
...  
2002 ◽  
Author(s):  
Masahiro Osakabe ◽  
Sachiyo Horiki ◽  
Tsugue Itoh ◽  
Ikuya Haze

2003 ◽  
Vol 32 (2) ◽  
pp. 153-166 ◽  
Author(s):  
Masahiro Osakabe ◽  
Kiyoyuki Yagi ◽  
Tsugue Itoh ◽  
Kunimitsu Ohmasa

Author(s):  
Wlodzimierz Blasiak ◽  
Weihong Yang

This work presents the main features, advantages and evaluation of applications of the novel “Ecotube” combustion improvement and emission reduction system by Ecomb AB of Sweden and Synterprise, LLC of Chattanooga, Tennessee. In the Ecotube system, the nozzles used for mixing are put on the suitable position inside the combustion chamber to control uniformity of temperature, mixing and reactants distribution in boilers and incinerators since the formation and reduction of pollutants (NO, CO and VOC) and in-furnace reduction processes (Air/Fuel staging, SNCR, flue gas recirculation and SOx reduction by dry sorbent injection) are related directly to mixing in a combustion chamber. The novel Ecotube combustion improvement system allows better control of mixing of the gases for example from a primary combustion zone with secondary combustion air or a recirculated flue gas. By means of the novel system it is possible to better control the residence time and to some degree gas phase temperature distribution as well as the heat release distribution in the furnace of the waste incinerators or boilers. This new combustion improvement system can be applied to supply different gas or liquid media — for example air, fuel, urea or even solid powder. Using the system a more efficient and environmentally clean combustion or incineration process can be performed. The Ecotube System may be used to meet increasingly stringent environmental emissions regulations, such as NOx SIP Call, while it delivers added benefits of reduced and stabilized CO and reduced fly ash and improved boiler efficiency. The study tool used in this work to present influence of the Ecotube system design on temperature as well as uniformity of reactants and flow field is numerical modeling. Using this tool, the influence of the position of the Ecotube system and the injection angle of the nozzles are studied. The studied boilers included the biomass waste incinerator, municipal solid waste incinerator and coal fired boiler. The concept of the Heat Release Distribution Ratio is proposed to classify the heat release inside the upper furnace of the boilers or incinerators. The results show that Ecotube spreads reaction zone over a larger furnace volume. The furnace flame occupation coefficient can be as high as 45% with the Ecotube system and it is around 40% higher comparing with the conventional multinozzle mixing system. Ecotube system allows keeping far more uniform heat release distribution, more uniform temperature distribution, and thus longer life of the heat transfer surfaces inside the furnace. Position of the Ecotube system and the injection angle of the nozzles are of primary importance and can be used as a technical parameter to control the boiler operation at different loads and varying operating conditions.


1995 ◽  
Vol 51-52 (1) ◽  
pp. 681-692 ◽  
Author(s):  
Hiroyo Matsumoto ◽  
Norio Shioji ◽  
Akihiro Hamasaki ◽  
Yoshiaki Ikuta ◽  
Yoshinori Fukuda ◽  
...  

2015 ◽  
Vol 789-790 ◽  
pp. 377-381 ◽  
Author(s):  
Somrat Kerdsuwan

Incineration is a Thermal Treatment Technology (3Ts) that could be expressed as the way to get rid of waste effectively with the reduction of its mass and volume. However, to control the combustion process efficiently, especially combustion temperature, with low energy content in Municipal Solid Waste (MSW), an additional fuel is needed and leads to increase of operating cost compared with other disposal option. High Temperature Air Combustion (HTAC) has been successfully demonstrated in a lab-scale incinerator for energy saving and pollutant reduction, especially NOx. This article has the objective to design and manufacture the prototype scale High Temperature Air Incinerator with a capacity to treat MSW of 12 Ton per day. The system consists of an automatic feeding machine to feed the waste into the primary combustion chamber (PCC) where the combustion takes place. The push ram is used to push the burning waste and fall down to the lower hearth. Primary combustion air is supplied into PCC at the amount lower than the stoichiometric requirement to produce the combustible gas which is flown into the Secondary Combustion Chamber (SCC) located above PCC. Secondary combustion air is injected to react with combustible gas to convert to the product of complete combustion. A part of hot flue gas which is flew out from SCC is reverted and mixed with fresh air, in order to reduce oxygen concentration, before passing through the heat exchanger tube bundle which is placed inside SCC in order to exchange heat with hot flue gas. To manufacture the designed incinerator, the detail of materials used as well as the frabication method is explained. It has been shown that HTAC can be applied for thermal destruction of waste successfully, in term of energy saving and pollutant free. Benefits of this research work will promote the using of thermal treatment technology of dispose of MSW with lower operating cost and lower pollutants.


1998 ◽  
Vol 64 (626) ◽  
pp. 3378-3383 ◽  
Author(s):  
Masahiro OSAKABE ◽  
Kazuhiko ISHIDA ◽  
Kiyoyuki YAGI ◽  
Tugue ITOH ◽  
Kunimitu OHMASA

10.14311/1544 ◽  
2012 ◽  
Vol 52 (3) ◽  
Author(s):  
Břetislav Janeba ◽  
Michal Kolovratník ◽  
Ondřej Bartoš

Operational measurements of the O2 concentration in the combustion chamber of a pulverized coal boiler are not yet common practice. Operators are generally satisfied with measuring the O2 concentration in the second pass of the boiler, usually behind the economizer, where a flue gas sample is extracted for analysis in a classical analyzer. A disadvantage of this approach is that there is a very weak relation between the measured value and the condition in specific locations in the fireplace, e.g. the function of the individual burners and the combustion process as a whole. A new extractionline was developed for measuring the O2 concentration in the combustion chamber. A planar lambda probe is used in this approach. The extraction line is designed to get outputs that can be used directly for diagnosis or management of the combustion in the boiler.


2001 ◽  
Vol 30 (2) ◽  
pp. 139-151 ◽  
Author(s):  
Masahiro Osakabe ◽  
Kazuhiko Ishida ◽  
Kiyoyuki Yagi ◽  
Tugue Itoh ◽  
Kunimitu Ohmasa

Sign in / Sign up

Export Citation Format

Share Document