coal boiler
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 45)

H-INDEX

21
(FIVE YEARS 3)

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 246
Author(s):  
Kang-Min Kim ◽  
Gyu-Bo Kim ◽  
Byoung-Hwa Lee ◽  
Yoon-Ho Bae ◽  
Chung-Hwan Jeon

The need to reduce global carbon dioxide (CO2) emissions is driving the conversion of coal-fired power plants to use methane, which can reduce CO2 emissions by >40%. However, conducting gas firing in coal boilers changes the heat transfer profile; therefore, preliminary evaluations using computational fluid dynamics are required prior to conversion. Here, methane was used as a heat input source in the simulation of an existing coal boiler, and combustion, nitrogen oxides (NOx) emission characteristics, and heat transfer profile changes inside the boiler were analyzed. Furthermore, changes in the burner zone stoichiometric ratio (BZSR) were simulated to restore the decreased heat absorption of the furnace waterwall, revealing that air distribution could change the heat absorption of the waterwall and tube bundles. However, this change was smaller than that caused by conversion from coal to methane. Therefore, to implement gas firing in coal boilers, alternatives such as output derating, using an attemperator, or modifying heat transfer surfaces are necessary. Despite these limitations, a 70% reduction in NOx emissions was achieved at a BZSR of 0.76, compared with coal. As the BZSR contributes significantly to NOx emissions, conducting gas firing in existing coal boilers could significantly reduce NOx and CO2 emissions.


2021 ◽  
Vol 3 (3) ◽  
pp. 213-226
Author(s):  
Tatyana Vedernikova ◽  
Artur Vronskiy

This article provides an overview of existing turbulence models. The scheme of combustion of pulverized coal fuel, the construction of a pulverized coal boiler unit and the process of burning coal in the furnace of a boiler unit BKZ-420-140 are considered. We analyzed the existing turbulence models and selected the most optimal mathematical model to study the combustion process of pulverized coal fuel in order to increase the efficiency of the CHPP.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8352
Author(s):  
Hyunbin Jo ◽  
Jongkeun Park ◽  
Woosuk Kang ◽  
Junseok Hong ◽  
Sungmin Yoon ◽  
...  

Tangential-firing boilers develop large swirling fireballs by using pulverized coal and air from the corners of the burner zone. During operation, however, the boiler may experience an uneven air supply between corners; this deforms the fireball, raising various issues concerning performance and structural safety. This study investigated the characteristic boiler performance and the role of burner tilting in a 500 MWe boiler with secondary air (SA) in two corners that are up to 1.9 times larger than those in the other corners. Computational fluid dynamics simulations with advanced coal combustion sub-models were employed with the following two sets of cases: (i) six cases of actual operation to validate the modeling and (ii) sixteen cases for the parametric study of SA flow ratio and burner tilt between −15° and +26°. The results showed that the uneven SA supply deteriorated the boiler performance in various aspects and the burner tilt can be used to alleviate its impact. With a larger SA supply from the left wind box, the mass flow, heat absorption, and O2 concentration were larger in the right half of the heat exchanger sections owing to the rotating flow. The corresponding imbalance in the reaction stoichiometry increased the peak temperature entering the tube bundles by up to 60 °C and NO emissions by 6.7% as compared with normal operations. The wall heat absorption was up to 19% larger on the right and front walls. The high burner tilt of +26° helped alleviate the impact of uneven SA supply on the heat distribution and uniformity of the flow pattern and temperature, whereas a +15° burner tilt was the least favorable.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012149
Author(s):  
A A Dekterev ◽  
V A Kuznetsov ◽  
E S Tepfer

Abstract The work is devoted to the mathematical modeling of heat and mass transfer processes during flare combustion of coal dust in a four-vortex combustion chamber. For modeling, a set of interrelated models is used that describes the gas movement, thermal and radiant energy transfer, the processes of destruction and burnout of coal particles, and the formation of NOx. The simulation results showed that in a wide range of changes in the boiler load in the furnace, a stable four-vortex flow structure is formed with a fairly uniform temperature distribution in the furnace volume and a low level of NOx formation.


ACS Omega ◽  
2021 ◽  
Author(s):  
Kang-Min Kim ◽  
Gyu-Bo Kim ◽  
Byoung-Hwa Lee ◽  
Chung-Hwan Jeon ◽  
Joon-Ho Keum

2021 ◽  
Vol 2083 (4) ◽  
pp. 042094
Author(s):  
Guodong Gao

Abstract Restricted by Xinjiang’s special geographical location, economic conditions, transportation and other factors, Zhundong coal can’t be sent out on a large scale, which seriously hinders the development of Zhundong coal base. Meanwhile, due to the coal-forming history and Xinjiang’s special natural geographical environment, the alkali metal content in Zhundong coal is generally over 2%, which is much higher than that of power coal in other parts of China. In this paper, based on computer control system, the combustion and alkali metal distribution in Zhundong high alkali coal boiler are simulated, and the morphological distribution characteristics and migration laws of alkali metals such as Na and K in pulverized coal combustion process of high alkali coal, low alkali coal and their two coal samples are deeply studied. Combustion characteristics and heat flow distribution, the simulation results show that the flue gas temperature at the furnace outlet is 895.07°C, and the flue gas temperature near the wall is low, which is helpful to alleviate the slagging and contamination in the furnace.


Sign in / Sign up

Export Citation Format

Share Document