Modeling and Simulation of an Industrial Trickle-Bed Reactor for Benzene Hydrogenation: Model Validation against Plant Data

2009 ◽  
Vol 48 (4) ◽  
pp. 1866-1872 ◽  
Author(s):  
Jonas Roininen ◽  
Ville Alopaeus ◽  
Sami Toppinen ◽  
Juhani Aittamaa
2018 ◽  
Vol 126 (1) ◽  
pp. 31-48 ◽  
Author(s):  
Ignacio Elizalde ◽  
Fabián S. Mederos ◽  
Ma. del Carmen Monterrubio ◽  
Ninfa Casillas ◽  
Hugo Díaz ◽  
...  

1993 ◽  
Vol 16 (5) ◽  
pp. 347-359 ◽  
Author(s):  
Sunil Dutt Sharma ◽  
Kasturi Gadgil ◽  
Manoj Kumar Sarkar

2014 ◽  
Vol 66 ◽  
pp. 22-35 ◽  
Author(s):  
Davide Durante ◽  
Teuvo Kilpiö ◽  
Petteri Suominen ◽  
Victor Sifontes Herrera ◽  
Johan Wärnå ◽  
...  

2006 ◽  
Vol 45 (21) ◽  
pp. 7110-7119 ◽  
Author(s):  
Kostas C. Metaxas ◽  
Nikos G. Papayannakos

1975 ◽  
Vol 40 (10) ◽  
pp. 3145-3152 ◽  
Author(s):  
J. Prchlík ◽  
J. Soukup ◽  
V. Zapletal ◽  
V. Růžička ◽  
P. Kovařík

1998 ◽  
Vol 63 (11) ◽  
pp. 1938-1944 ◽  
Author(s):  
Vratislav Tukač ◽  
Jiří Vokál ◽  
Jiří Hanika

Catalytic activity of CuO-supported catalyst in phenol oxidation, and the influence of reaction conditions, viz. temperature (125-170 °C), oxygen partial pressure (1-7 MPa) and liquid feed (30-760 ml h-1), in the continuous operation using 17.9 mm i.d. trickle-bed reactor is presented. The hydrodynamic impact on the three-phase trickle-bed reactor performance in an environmental application of catalytic wet oxidation was also investigated. The results of trickle-bed operation were strongly influenced by wetting efficiency. An insufficient catalyst wetting can be to compensated by filling the catalyst bed voids by fine glass spheres. In the case of the gas transfer limited reaction, a better wetting of the catalyst can lead to worse reactor performance due to lower reaction rates.


2021 ◽  
Vol 51 ◽  
pp. 101611
Author(s):  
Mads Borgbjerg Jensen ◽  
Súsanna Poulsen ◽  
Bjarke Jensen ◽  
Anders Feilberg ◽  
Michael Vedel Wegener Kofoed

Sign in / Sign up

Export Citation Format

Share Document