Thermal decomposition of energetic materials. Part 9. A relationship of molecular structure and vibrations to decomposition: polynitro-3,3,7,7-tetrakis(trifluoromethyl)-2,4,6,8-tetraazabicyclo[3.3.0]octanes

1986 ◽  
Vol 90 (12) ◽  
pp. 2679-2682 ◽  
Author(s):  
T. B. Brill ◽  
Y. Oyumi
2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098062
Author(s):  
Shuangping Ma ◽  
Qingjun Ding ◽  
Fen Zhou ◽  
Huaxiong Zhu

The chemical modifications of lignin-based superplasticizers have attracted extensive attentions during recent years. The comprehending of the structure-activity relationship of lignin-based superplasticizer is important to promote the modification and application research of lignin resources. However, lignin features complex and variable molecular structure, which is not conducive to study on structure-activity relationship of lignin-based superplasticizer as well as development and application of new lignin-based superplasticizer. However, the related research work can be simplified by selecting small molecular compound with appropriate molecular structure as the lignin model compound. This article intends to study the structure-activity relationship of lignin-based superplasticizer by using dihydroeugenol as the lignin model compound. Through the substitution of lignin by dihydroeugenol during the synthesis process, a model compound lignin-based superplasticizer (DAFS) was synthesized. The adsorption and dispersion properties of this superplasticizer and reference sample (LAFS) were investigated by fluidity test, Zeta-potential measurement, Total organic carbon analysis and others. The results suggest that the adsorption behavior of both DAFS and LAFS conformed to the Langmuir isotherms and Pseudo-second order kinetic. In cement paste, added with 1 g/L of LAFS and DAFS, Zeta potential were reduced from +3.5 to −15.2 mV and −18.7 mV, respectively. The substitution of lignin by dihydroeugenol has no significantly influence on the dispersive property, but differences on rheological properties which need to be optimized in the future. All the tests confirmed that dihydroeugenol is suitable to replace lignin on exploring the structure-activity relationship of lignin-based superplasticizer. This research work provides new insight on model study of lignin-based superplasticizer.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Zhou ◽  
Li Ding ◽  
Yong Zhu ◽  
Bozhou Wang ◽  
Xiangzhi Li ◽  
...  

AbstractOrganic inner salt structures are ideal backbones for heat-resistant energetic materials and systematic studies towards the thermal properties of energetic organic inner salt structures are crucial to their applications. Herein, we report a comparative thermal research of two energetic organic inner salts with different tetraazapentalene backbones. Detailed thermal decomposition behaviors and kinetics were investigated through differential scanning calorimetry and thermogravimetric analysis (DSC-TG) methods, showing that the thermal stability of the inner salts is higher than most of the traditional heat-resistant energetic materials. Further studies towards the thermal decomposition mechanism were carried out through condensed-phase thermolysis/Fourier-transform infrared (in-situ FTIR) spectroscopy and the combination of differential scanning calorimetry-thermogravimetry-mass spectrometry-Fourier-transform infrared spectroscopy (DSC-TG-MS-FTIR) techniques. The experiment and calculation results prove that the arrangement of the inner salt backbones has great influence on the thermal decompositions of the corresponding energetic materials. The weak N4-N5 bond in “y-” pattern tetraazapentalene backbone lead to early decomposition process and the “z-” pattern tetraazapentalene backbone exhibits more concentrated decomposition behaviors.


1991 ◽  
Vol 181 ◽  
pp. 71-77 ◽  
Author(s):  
J.K. Chen ◽  
T.B. Brill

Sign in / Sign up

Export Citation Format

Share Document