Aerosol Studies by Light Scattering. III. Preparation and Particle Size Analysis of Sodium Chloride Aerosols of Narrow Size Distribution

1964 ◽  
Vol 68 (10) ◽  
pp. 2831-2842 ◽  
Author(s):  
W. F. Espenscheid ◽  
E. Matijevic ◽  
M. Kerker
2021 ◽  
Author(s):  
Maame Croffie ◽  
Paul N. Williams ◽  
Owen Fenton ◽  
Anna Fenelon ◽  
Karen Daly

<p>Soil texture is an essential factor for effective land management in agricultural production. Knowledge of soil texture and particle size at field scale can aid with on-going soil management decisions. Standard soil physical and gravimetric methods for particle size analysis are time-consuming and X-ray fluorescence spectrometry (XRF) provides a rapid and cost-effective alternative. The objective of this study was to explore the use of XRF as a predictor for particle size. An extensive archive of Irish soils with particle size and soil texture data was used to select samples for XRF analysis. Regression and correlation analyses on XRF determined results showed that the relationship between Rb and % clay varied with soil type and was dependent on the parent material. There was a strong relationship (R > 0.62, R<sup>2</sup>>0.30, p<0.05) between Rb and clay for soils originating from bedrock such as limestones and slate. Contrastingly, no significant relationship (R<0.03, R<sup>2</sup>=0.00, p>0.05) exists between Rb and % clay for soils originating from granite and gneiss. Furthermore, there was a significant negative correlation (p<0.05) between Rb and % sand. The XRF is a useful technique for rough screening of particle size distribution in soils originating from certain parent materials. Thus, this may contribute to the rapid prediction of soil texture based on knowledge of the particle size distribution.</p><p> </p>


Author(s):  
Lawrence J. Czerwonka ◽  
Jack M. Carey

A general purpose centrifuge method for measuring particle-size distribution of air-filter inlet, outlet and catch dust samples is demonstrated. Treatment and analysis of data to determine air-cleaner performance based on size distribution is shown for two types of air filters, a louver and a glass-fiber media filter. The advantages and limitations of the method and interpretations of results associated with the application of these procedures for arriving at efficiency versus particle-size performance curves, and for predicting filter efficiency for any given dust are discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Songhao Shang

Particle size distribution (PSD) is a fundamental physical property of soils. Traditionally, the PSD curve was generated by hand from limited data of particle size analysis, which is subjective and may lead to significant uncertainty in the freehand PSD curve and graphically estimated cumulative particle percentages. To overcome these problems, a log-cubic method was proposed for the generation of PSD curve based on a monotone piecewise cubic interpolation method. The log-cubic method and commonly used log-linear and log-spline methods were evaluated by the leave-one-out cross-validation method for 394 soil samples extracted from UNSODA database. Mean error and root mean square error of the cross-validation show that the log-cubic method outperforms two other methods. What is more important, PSD curve generated by the log-cubic method meets essential requirements of a PSD curve, that is, passing through all measured data and being both smooth and monotone. The proposed log-cubic method provides an objective and reliable way to generate a PSD curve from limited soil particle analysis data. This method and the generated PSD curve can be used in the conversion of different soil texture schemes, assessment of grading pattern, and estimation of soil hydraulic parameters and erodibility factor.


2002 ◽  
Vol 740 ◽  
Author(s):  
Gopinath Mani ◽  
Qinguo Fan ◽  
Samuel C. Ugbolue ◽  
Isabelle M. Eiff

ABSTRACTThis research work focuses on combining ball milling and ultrasonication to produce nano-size clay particles. Our work also emphasizes on increasing the specific surface area of montmorillonite clay particles by reducing the particle size to nanometer dimensions. We have characterized the as-received clay particles by using particle size analysis based on laser diffraction and found that the size of the clay particles is not consistent and the particle size distribution is very broad. However, after the unique treatment and processing, the clay particles were obtained in nanometer dimensions with narrowed particle size distribution.


Sign in / Sign up

Export Citation Format

Share Document