Characterization of superoxide-metalloporphyrin reaction products: effective use of deuterium NMR spectroscopy

1982 ◽  
Vol 104 (23) ◽  
pp. 6318-6322 ◽  
Author(s):  
Ataollah Shirazi ◽  
Harold M. Goff
1990 ◽  
Vol 68 (3) ◽  
pp. 492-501 ◽  
Author(s):  
Andrew P. Masters ◽  
Ted S. Sorensen

Reactions of pentacarbonyl manganate anion with 4-halocrotonate esters or 2-halocarboxylate esters result in a complex set of inorganic and organic products, usually including the expected dienolate (or enolate) complexes. The reaction variables include the counterion, solvent, and halo group. The mechanism of the reaction has been investigated by conducting a thorough characterization of the reaction products under various conditions and also by carrying out model reactions. One can rationalize most of the non-organometallic products using either a radical or carbanion mechanism, but the latter seems to fit the available data better. Experimental procedures for optimizing the yield of the organometallic dienolate or enolate complexes have been worked out. Keywords: pentacarbonyl manganate, metalate nucleophilicity, enolate complex, nucleophilic substitution, 55Mn NMR spectroscopy.


2007 ◽  
Vol 45 (3) ◽  
pp. 240-244 ◽  
Author(s):  
Mary M. Senior ◽  
Tze-Ming Chan ◽  
Guoqing Li ◽  
Ying Huang ◽  
Andrew Stamford

Author(s):  
G. Das ◽  
R. E. Omlor

Fiber reinforced titanium alloys hold immense potential for applications in the aerospace industry. However, chemical reaction between the fibers and the titanium alloys at fabrication temperatures leads to the formation of brittle reaction products which limits their development. In the present study, coated SiC fibers have been used to evaluate the effects of surface coating on the reaction zone in the SiC/IMI829 system.IMI829 (Ti-5.5A1-3.5Sn-3.0Zr-0.3Mo-1Nb-0.3Si), a near alpha alloy, in the form of PREP powder (-35 mesh), was used a茸 the matrix. CVD grown AVCO SCS-6 SiC fibers were used as discontinuous reinforcements. These fibers of 142μm diameter contained an overlayer with high Si/C ratio on top of an amorphous carbon layer, the thickness of the coating being ∽ 1μm. SCS-6 fibers, broken into ∽ 2mm lengths, were mixed with IMI829 powder (representing < 0.1vol%) and the mixture was consolidated by HIP'ing at 871°C/0. 28GPa/4h.


Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (1) ◽  
pp. 37-43 ◽  
Author(s):  
HANNU PAKKANEN ◽  
TEEMU PALOHEIMO ◽  
RAIMO ALÉN

The influence of various cooking parameters, such as effective alkali, cooking temperature, and cooking time on the formation of high molecular mass lignin-derived and low molecular mass carbohydrates-derived (aliphatic carboxylic acids) degradation products, mainly during the initial phase of softwood kraft pulping was studied. In addition, the mass transfer of all of these degradation products was clarified based on their concentrations in the cooking liquor inside and outside of the chips. The results indicated that the degradation of the major hemicellulose component, galactoglucomannan, typically was dependent on temperature, and the maximum degradation amount was about 60%. In addition, about 60 min at 284°F (140°C) was needed for leveling off the concentrations of the characteristic reaction products (3,4-dideoxy-pentonic and glucoisosaccharinic acids) between these cooking liquors. Compared with low molecular mass aliphatic acids, the mass transfer of soluble lignin fragments with much higher molecular masses was clearly slower.


Sign in / Sign up

Export Citation Format

Share Document