The determination of the rate-limiting step in a proton transfer reaction from the breakdown of the Swain-Schaad relation

1977 ◽  
Vol 99 (2) ◽  
pp. 637-638 ◽  
Author(s):  
W. J. Albery ◽  
Jeremy R. Knowles
1980 ◽  
Vol 185 (3) ◽  
pp. 723-732 ◽  
Author(s):  
Hadassa Weintraub ◽  
Etienne-Emile Baulieu ◽  
Annette Alfsen

Studies of the proton-transfer reaction by Pseudomonas testosteroni 3-oxo steroid Δ4–Δ5-isomerase with Δ5(6)- and Δ5(10)-steroid substrates demonstrate the importance of the position of the double bond for the efficiency of the isomerization process. Thus 3-oxo-Δ5(6)-substrates have markedly high kcat. values, whereas those of 3-oxo-Δ5(10)-substrates are very low and their apparent Km values approach equilibrium dissociation constants. The first step in the isomerization process is: [Formula: see text] which is governed by the k−1/k+1 ratio and is shown to be very similar for the two classes of substrates (3-oxo-Δ5(6)- and -Δ5(10)-steroids). They therefore differ in the steps distal to the initial formation of the Michaelis–Menten complex. The use of the deuterated androst-5(6)-ene-3,17-dione substrate enabled us to calculate individual rate constants k+1 and k−1 as well as to determine the apparent rate-limiting step in the isomerization process. With the deuterated oestr-5(10)-ene-3,17-dione substrate, no significant isotope effect was observed suggesting that a different rate-limiting step may be operative in this isomerization process. Data are presented that indicate that under optimal concentrations of the efficient androst-5(6)-ene-3,17-dione substrate, the forward reaction for ES complex formation (as defined by k+1) is limited only by diffusion and the apparent Km does not approach the equilibrium constant, suggesting that the evolution of this enzyme has proceeded close to ‘catalytic perfection’.


2018 ◽  
Vol 20 (2) ◽  
pp. 415-415
Author(s):  
Mikolaj Jan Jankowski ◽  
Raymond Olsen ◽  
Claus Jørgen Nielsen ◽  
Yngvar Thomassen ◽  
Paal Molander

Correction for ‘The applicability of proton transfer reaction-mass spectrometry (PTR-MS) for determination of isocyanic acid (ICA) in work room atmospheres’ by Mikolaj Jan Jankowski et al., Environ. Sci.: Processes Impacts, 2014, 16, 2423–2431.


2018 ◽  
Vol 6 (47) ◽  
pp. 24358-24366 ◽  
Author(s):  
Hao Li ◽  
Huan Shang ◽  
Yuchen Shi ◽  
Rositsa Yakimova ◽  
Mikael Syväjärvi ◽  
...  

Preferential exposure of Si-face of SiC will mechanistically shift the rate limiting step of water oxidation from sluggish proton-coupled electron transfer on C-face to a more energy-favorable electron transfer.


1972 ◽  
Vol 20 (11) ◽  
pp. 917-922 ◽  
Author(s):  
DAVID I. WILKINSON ◽  
DAVID GLICK

In an attempt to clarify the question of whether histidine is stored in the mast cell for coversion to histamine or whether the rate of conversion is rapid enough to prevent accumulation of histidine so that the rate-limiting step is the histidine uptake, it was found that no histidine was demonstrable in rat peritoneal mast cells by either quantitative analysis or paper chromatographic detection. Microadaptation of Hassall's method, based on conversion of l-histidine by histidase to urocanic acid and measurement of the latter by its absorbance at 277 nm, was made to permit determination of histidine in nanogram amounts in the presence of histamine. This adaptation was found reliable when compared with the o-phthalaldehyde method in estimation of l-histidine in serum and in insulin hydrolysate, and then it was applied to analysis of mast cells before and after l-histidine uptake in vitro. The adaptation should be generally useful in microanalysis of l-histidine in histologically and cytologically defined samples.


2014 ◽  
Vol 16 (10) ◽  
pp. 2423-2431 ◽  
Author(s):  
Mikolaj Jan Jankowski ◽  
Raymond Olsen ◽  
Claus Jørgen Nielsen ◽  
Yngvar Thomassen ◽  
Paal Molander

This study presents a real-time method to quantitatively determine isocyanic acid (ICA) in workroom air using a proton transfer reaction-mass spectrometer (PTR-MS).


1988 ◽  
Vol 53 (3) ◽  
pp. 601-618 ◽  
Author(s):  
Jaromír Kaválek ◽  
Vladimír Macháček ◽  
Makky M. M. Hassanien ◽  
Vojeslav Štěrba

The reaction of N-methyl-N-(2,4,6-trinitrophenyl)glycinamide (Ic with methoxide in methanol produces the spiro adduct IIc(A). In methanolic acetate buffers, the equilibrium is rapidly established between the spiro adduct IIc(A) and the dipolar ion of 2-methylamino-N-(2,4,6-trinitrophenyl)acetamide (IIIc(Z)). The equilibrium constant of the reaction IIIc(Z) ⇆ IIc(A) + H+ is by eight orders of magnitude greater than that of the analogous cyclization of 2-methylamino-N-methyl-N-(2,4,6-trinitrophenyl)acetamide to the spiro adduct. In chloracetate buffers, the dipolar ion is protonated to give 2-methylammonium-N-(2,4,6-trinitrohenyl)acetamide IIIc(K). The kinetics of the reversible reaction IIIc(Z) ⇆ IIc(A) + H+ has been studied in acetate buffers, aliphatic amine – ammonium salt buffers, and methoxide solutions. In all cases, the rate-limiting step was the proton transfer with half-lives in milliseconds. In more basic methanolic buffers (pH > 10) the rate-limiting step consists in the formation of spiro adduct from the zwiterion IIIc(Z) resulting from the protonation of the anion IIIc(A). n acetate buffers, the second reaction pathway via the cation IIIc(K) is predominant.


1975 ◽  
Vol 30 (7-8) ◽  
pp. 438-441
Author(s):  
Klaus Brendel ◽  
Rubin Bressler ◽  
Miguel A. Alizade

Abstract An isotope effect of the dehydrogenation of (R) Carnitine [(R) 3-hydroxy-4-trimethylamino-butyric acid hydrochloride] catalyzed by (R) carnitine dehydrogenase [(R) carnitine: NAD oxido-reductase E.C. 1.1.1.108] from Pseudomonas aeruginosa was measured at different temperatures. It was found that k1H/k3H does not vary greatly with changes of temperature. The value of 3 for k1H/k3H measured at small initial conversions strongly indicated that the rate limiting step of the oxidation of (R) carnitine is the cleavage of the C-H bond at C3.


Sign in / Sign up

Export Citation Format

Share Document