Sweeping Capillary Electrophoresis:  A Non-Stopped-Flow Method for Measuring Bimolecular Rate Constant of Complex Formation between Protein and DNA

2004 ◽  
Vol 126 (23) ◽  
pp. 7166-7167 ◽  
Author(s):  
Victor Okhonin ◽  
Maxim Berezovski ◽  
Sergey N. Krylov
1979 ◽  
Vol 8 (6) ◽  
pp. 671-674 ◽  
Author(s):  
Noboru Takisawa ◽  
Muneo Sasaki ◽  
Fujitsugu Amita ◽  
Jiro Osugi

1970 ◽  
Vol 67 (5) ◽  
pp. 749-752 ◽  
Author(s):  
NAOKI HIGASHI ◽  
HIROHUMI SHOUN ◽  
KEITARO HIROMI ◽  
KEIJI YANO ◽  
KEI ARIMA

1984 ◽  
Vol 62 (9) ◽  
pp. 1681-1686 ◽  
Author(s):  
Robert Ménard ◽  
Miklos Zador

The complex formed between acridine orange (AO) and polycytidylic acid (poly(C)) was studied by spectrophotometry and spectrofluorometry. The complex was characterized by its stoichiometry, structure, and the thermodynamic parameters of its formation. The results are in agreement with an external aggregation of the protonated dye along the negatively charged poly(C) chain and indicate that approximately two AO molecules are bound per nucleotide unit of poly(C). The kinetics of the reaction between this complex and a Pd(II) complex was studied by the stopped-flow method. The addition of (dien)Pd(II) to the AO–poly(C) complex leads to the dissociation of the latter, due to fixation of the Pd(II) complex to the N3 site of the cytosine base of poly(C). The rate constant for the AO liberation, extrapolated at zero AO concentration, corresponds to the rate constant of Pd(II) fixation on poly(C). This indicates that AO can be used as an indicator for this reaction and allows kinetic studies at very low concentrations (≤ 5 × 10−6 M).


2010 ◽  
Vol 5 (2) ◽  
pp. 83-87
Author(s):  
Natalia Secara

The reaction of dihydroxyfumaric acid with the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) was studied using the stopped-flow method, in order to describe the reaction kinetics. Dihydroxyfumaric acid reacts very rapidly with DPPH, the reaction being completed in several minutes. This 2-stoichiometric reaction proceeds in two stages, with reaction orders of 1 and 0.76 with respect to DPPH, and 0.5 and 0.3 with respect to DHF, respectively. The rate constant of the two stages of the reaction were found to be 39.1 (L/mol•s) and 0.0012 (s-1) at 20º C and pH 4.0.


1987 ◽  
Vol 52 (7) ◽  
pp. 1658-1665
Author(s):  
Viktor Řehák ◽  
Jana Boledovičová

Disodium 1,5- and 1,8-anthracenedisulphonate (ADS) and 9-acetylanthracene form coloured CT complexes with methylviologen (MV2+) in aqueous and micellar media. The complex formation constants and molar absorptivities were determined by the Benesi-Hildebrandt method. In the fluorescence quenching, its static component plays the major role. The dynamic quenching component is determined by the rate constant of electron transfer from the S1 state of ADS to MV2+.


1991 ◽  
Vol 302 (1-2) ◽  
pp. 285-291 ◽  
Author(s):  
V.G. Mairanovsky ◽  
S.Kh. Samvelyan
Keyword(s):  

1995 ◽  
Vol 309 (1-3) ◽  
pp. 277-282 ◽  
Author(s):  
Yun-Sheng Hsieh ◽  
S.R. Crouch

2021 ◽  
Vol 11 ◽  
Author(s):  
Laboni Das ◽  
Shashi P Shukla ◽  
Suchandra Chatterjee ◽  
Ashis K Satpati ◽  
Soumyakanti Adhikari

Aims: The aim is to search for newer and better antioxidants through kinetic spectroscopic studies in combination with product analysis and computation. Background: Antioxidant effect of caffeic acid, its derivative, and analogues have been well reported. The antioxidative efficiencies are related to their molecular structure, and two reaction pathways are well accepted, H-atom transfer (HAT) or single electron transfer. 1-hydroxy ethyl radical (1-HER) being an ethanol-derived free radical might be causing the onset of liver injury detected after alcohol administration. 1-HER has also been reported to react with fatty acids and endogenous antioxidants such as glutathione, ascorbic acid, and alpha-tocopherol Objective: The present study is an attempt to understand the reaction mechanism of 1-HER with caffeic acid, its derivative, and analogues in detail. Method: Pulse radiolysis with kinetic absorption spectroscopy has been employed to follow the reaction pathway and identify the intermediates produced in the reaction. The reaction products have been detected using LCMS/MS. Based on these studies, a consolidated mechanism has been proposed. Cyclic voltammetry measurements and computational calculations have been used in support of the proposed mechanism. Result: In the reaction of 1-hydroxy ethyl radical (1-HER) with caffeic acid and its oligomers, reduction takes place below the pKa1, while oxidation occurs with the deprotonated phenolic moiety. The reduction of caffeic acid generates a carbon-centered radical at the double bond of the side chain with a bimolecular rate constant of 1.5x1010 dm3 mol-1 s-1. Notably, a low concentration of oxygen was able to regenerate a part of the caffeic acid molecules in the reduction process. At pH 10 a phenoxyl radical is formed due to oxidation with a much lower bimolecular rate constant (4.2x108 dm3 mol-1 s-1). In the case of di-hydrocaffeic acid, only phenoxyl radical is formed at pH 10 and, no reaction could be observed below pH 8. Conclusion: Change in reactive pattern from reduction to oxidation with change in pH within the same set of reactants has been evidently established in the present study. The results point towards the importance of  unsaturation in the side chain of caffeic acid oligomers for their reaction with 1-HER at neutral pH. The effect of oxygen concentration on the antioxidative protection offered by this class of molecules might be intriguing for the quest of the effectiveness of antioxidants at low concentrations. Other: It may be inferred that the effect of pH on the reactivity pattern as observed is not 1-HER, but substrate-specific, in the present case, phenolic acids. This study generates further scope for in-depth studies on other polyphenols where unsaturation exists in the side chain.


Sign in / Sign up

Export Citation Format

Share Document