A Microfluidic Fuel Cell with Flow-Through Porous Electrodes

2008 ◽  
Vol 130 (12) ◽  
pp. 4000-4006 ◽  
Author(s):  
Erik Kjeang ◽  
Raphaelle Michel ◽  
David A. Harrington ◽  
Ned Djilali ◽  
David Sinton
2017 ◽  
Vol 206 ◽  
pp. 413-424 ◽  
Author(s):  
Li Li ◽  
Wenguang Fan ◽  
Jin Xuan ◽  
Michael K.H. Leung ◽  
Keqing Zheng ◽  
...  

Author(s):  
Ali Ebrahimi Khabbazi ◽  
Mina Hoorfar

This paper presents a modeling of a microfluidic fuel cell with flow-through porous electrodes using vanadium redox couples as the fuel and oxidant. There are advantages associated with the use of vanadium redox species in microfluidic fuel cell: 1) vanadium redox couples have the possibility of producing high open-circuit potential (up to 1.7 V at uniform PH [1]); 2) they have high solubility (up to 5.4 M) which causes more species available to the electrodes; 3) they do not require metal catalyst for electrochemical reactions so the reactions take place on the bare carbon electrodes. This characteristic of the vanadium redox couple make them a great candidate as reactants as they do not need expensive catalyst coatings on the electrodes. The fuel and the oxidant can be brought into contact with the electrode in two different ways: flowing over the electrodes or flowing through the electrodes. In the presented fuel cell design, the vanadium redox species are forced to flow through the porous electrodes. They finally come to meet each other in the middle microchannel and establish a side-by-side co-laminar flow traveling down the channel. In this paper, the effect of the inlet velocity and electrode porosity has been investigated. As it is expected, the higher velocity results in the higher power densities. For the porosity, however, there is an optimum value. In essence, there is a trade-off between the available electrode surface area and electric conductivity of the solid phase (i.e., the porous carbon electrode). The modeling shows that a porous electrode with a 67% porosity results in the highest power output.


Energy ◽  
2015 ◽  
Vol 88 ◽  
pp. 563-571 ◽  
Author(s):  
Li Li ◽  
Keqing Zheng ◽  
Meng Ni ◽  
Michael K.H. Leung ◽  
Jin Xuan

2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040022
Author(s):  
Qiang Xu ◽  
Yiyi She ◽  
Li Li

Porous electrodes in microfluidic fuel cell (MFC) operate with nonuniform reaction rate. It is intriguing to improve the utilization degree of the porous electrodes. In this work, a three-dimensional computational model is developed for MFC with flow-through porous electrodes. Characteristics of the reaction rate distributions under different electrode geometries are examined. The results show that reaction rate varies noticeably along the electrode width direction, but minimally along the electrode length direction. High reaction rate region locates in the vicinity of the interface between the porous electrode and the middle channel. A relatively high aspect ratio, defined as the ratio of the electrode length to width, is beneficial to improve the utilization degree of the porous electrodes. Yet, concentration losses increase due to the decreased fluid velocity. Considering the cell performance, optimal electrode aspect ratios are derived for the anode and cathode, respectively.


2017 ◽  
Vol 105 ◽  
pp. 1557-1563 ◽  
Author(s):  
Li Li ◽  
Wenguang Fan ◽  
Jin Xuan ◽  
Michael K.H. Leung ◽  
Keqing Zheng ◽  
...  

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
D. Fuerth ◽  
A. Bazylak

In this work, an experimental microfluidic fuel cell is presented with a novel up-scaled porous electrode architecture that provides higher available surface area compared to conventional microfluidic fuel cells, providing the potential for higher overall power outputs. Our proof-of-concept architecture is an up-scaled flow-through fuel cell with more than nine times the active electrode surface area of the flow-through architecture first proposed by Kjeang et al. (2008, “A Microfluidic Fuel Cell With Flow-Through Porous Electrodes,” J. Am. Chem. Soc., 130, pp. 4000–4006). Formic acid and potassium permanganate were employed as the fuel and oxidant, respectively, both dissolved in a sulfuric acid electrolyte. Platinum black was employed as the catalyst for both anode and cathode, and the performances of carbon-based porous electrodes including cloth, fiber, and foam were compared to that of traditional Toray carbon paper (TGP-H-120). The effects of catalyst loading were investigated in a microfluidic fuel cell containing 80 pores per linear inch carbon foam electrodes. A discussion is also provided of current density normalization techniques via projected electrode surface area and electrode volume, the latter of which is a highly informative means for comparing flow-through architectures.


Sign in / Sign up

Export Citation Format

Share Document