Ab Initio QM/MM Free Energy Simulations of Peptide Bond Formation in the Ribosome Support an Eight-Membered Ring Reaction Mechanism

2012 ◽  
Vol 134 (39) ◽  
pp. 16424-16429 ◽  
Author(s):  
Jun Xu ◽  
John Z. H. Zhang ◽  
Yun Xiang
Life ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 75 ◽  
Author(s):  
Berta Martínez-Bachs ◽  
Albert Rimola

Condensation reactions between biomolecular building blocks are the main synthetic channels to build biopolymers. However, under highly diluted prebiotic conditions, condensations are thermodynamically hampered since they release water. Moreover, these reactions are also kinetically hindered as, in the absence of any catalyst, they present high activation energies. In living organisms, in the formation of peptides by condensation of amino acids, this issue is overcome by the participation of adenosine triphosphate (ATP), in which, previous to the condensation, phosphorylation of one of the reactants is carried out to convert it as an activated intermediate. In this work, we present for the first time results based on density functional theory (DFT) calculations on the peptide bond formation between two glycine (Gly) molecules adopting this phosphorylation-based mechanism considering a prebiotic context. Here, ATP has been modeled by a triphosphate (TP) component, and different scenarios have been considered: (i) gas-phase conditions, (ii) in the presence of a Mg2+ ion available within the layer of clays, and (iii) in the presence of a Mg2+ ion in watery environments. For all of them, the free energy profiles have been fully characterized. Energetics derived from the quantum chemical calculations indicate that none of the processes seem to be feasible in the prebiotic context. In scenarios (i) and (ii), the reactions are inhibited due to unfavorable thermodynamics associated with the formation of high energy intermediates, while in scenario (iii), the reaction is inhibited due to the high free energy barrier associated with the condensation reactions. As a final consideration, the role of clays in this TP-mediated peptide bond formation route is advocated, since the interaction of the phosphorylated intermediate with the internal clay surfaces could well favor the reaction free energies.


2019 ◽  
Vol 97 (4) ◽  
pp. 497-503
Author(s):  
Hadieh Monajemi ◽  
Sharifuddin Md. Zain ◽  
Toshimasa Ishida ◽  
Wan Ahmad Tajuddin Wan Abdullah

The search for the mechanism of ribosomal peptide bond formation is still ongoing. Even though the actual mechanism of peptide bod formation is still unknown, the dominance of proton transfer in this reaction is known for certain. Therefore, it is vital to take the quantum mechanical effects on proton transfer reaction into consideration; the effects of which were neglected in all previous studies. In this study, we have taken such effects into consideration using a semi-classical approach to the overall reaction mechanism. The M06-2X density functional with the 6-31++G(d,p) basis set was used to calculate the energies of the critical points on the potential energy surface of the reaction mechanism, which are then used in transition state theory to calculate the classical reaction rate. The tunnelling contribution is then added to the classical part by calculating the transmission permeability and tunnelling constant of the reaction barrier, using the numerical integration over the Boltzmann distribution for the symmetrical Eckart potential. The results of this study, which accounts for quantum effects, indicates that the A2451 ribosomal residue induces proton tunnelling in a stepwise peptide bond formation.


Sign in / Sign up

Export Citation Format

Share Document