Transition-State and Ground-State Structures and Their Interaction with the Active-Site Residues in CatecholO-Methyltransferase

2000 ◽  
Vol 122 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Kalju Kahn ◽  
Thomas C. Bruice
2007 ◽  
Vol 06 (02) ◽  
pp. 245-253 ◽  
Author(s):  
YA SONG CUI ◽  
LI JIAO ZHAO ◽  
YONG DONG LIU ◽  
RU GANG ZHONG

A theoretical study has been carried out for internal rotation of nitrosoureas at the B3LYP/6-311G* level of theory. For each nitrosourea compound, two ground state structures have been found and the E isomer is predicted to be more stable than the Z isomer. Two transition state conformations for the isomerization have also been obtained and the calculated results show that the isomerization through TS1 is easier than that through TS2. The relationship between energy barrier and toxicity has also been investigated. It is concluded that the carcinogenic potency increases along with the decrease of rotational energy barrier.


2018 ◽  
Author(s):  
Yujuan Cai ◽  
Yang Hai ◽  
Masao Ohashi ◽  
Cooper S. Jamieson ◽  
Marc Garcia-Borras ◽  
...  

ABSTRACTLepI is an S-adenosylmethionine (SAM)-dependent pericyclase that catalyzes the formation of 2-pyridone natural product leporin C. Biochemical characterization showed LepI can catalyze the stereoselective dehydration to yield a reactive (E)-quinone methide which can undergo a bifurcating intramolecular Diels-Alder (IMDA) and hetero-Diels-Alder (HDA) cyclization from an ambimodal transition state, and a [3,3]-retro-Claisen rearrangement to recycle the IMDA product into leporin C. Here we solved the X-ray crystal structures of SAM-bound LepI, and in complex with a substrate analog, the product leporin C, and a retro-Claisen reaction transition-state analog to understand the structural basis for the multitude of reactions. Structural and mutational analysis revealed how Nature evolves a classic methyltransferase active site into one that can serve as a dehydratase and a multifunctional pericyclase. Catalysis of both sets of reactions employ His133 and Arg295, two active site residues that are not found in canonical methyltransferases. An alternative role of SAM, which is not found to be in direct contact of the substrate, is also proposed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ben A. Shurina ◽  
Richard C. Page

The cefotaximase or CTX-M, family of serine-β-lactamases represents a significant clinical concern due to the ability for these enzymes to confer resistance to a broad array of β-lactam antibiotics an inhibitors. This behavior lends CTX-M-ases to be classified as extended spectrum β-lactamases (ESBL). Across the family of CTX-M-ases most closely related to CTX-M-1, the structures of CTX-M-15 with a library of different ligands have been solved and serve as the basis of comparison within this review. Herein we focus on the structural changes apparent in structures of CTX-M-15 in complex with diazabicyclooctane (DABCO) and boronic acid transition state analog inhibitors. Interactions between a positive surface patch near the active site and complementary functional groups of the bound inhibitor play key roles in the dictating the conformations of active site residues. The insights provided by analyzing structures of CTX-M-15 in complex with DABCO and boronic acid transition state analog inhibitors and analyzing existing structures of CTX-M-64 offer opportunities to move closer to making predictions as to how CTX-M-ases may interact with potential drug candidates, setting the stage for the further development of new antibiotics and β-lactamase inhibitors.


2017 ◽  
Vol 14 (10) ◽  
pp. 1122-1137 ◽  
Author(s):  
Nivedita Singh ◽  
Parameswaran Saravanan ◽  
M.S. Thakur ◽  
Sanjukta Patra

Background: Phosphodiesterases 9A (PDE9A) is one of the prominent regulating enzymes of the signal transduction pathway having highest catalytic affinity for second messenger, cGMP. When the cGMP level is lowered, an uncontrolled expression of PDE9A may lead to various neurodegenerative diseases. To regulate the catalytic activity of PDE9A, potent inhibitors are needed. Objective: The primary objective of the present study was to develop new xanthine based inhibitors targeting PDE9A. This study was an attempt to bring structural diversification in PDE9A inhibitor development because most of the existing inhibitors are constructed over pyrazolopyrimidinone scaffold. Methods: Manual designing and parallel molecular docking approach were used for the development of xanthine derivatives. In this study, N1, N3, N9 and C8 positions of xanthine scaffold were selected as substitution sites to design 200 new compounds. Reverse docking and pharmaceutical analyses were used for final validation of most promising compounds. Results: By keeping free energy of binding cut-off of -6.0 kcal/mol, 52 compounds were screened. The compounds with substitution at N1, N3 and C8 positions of xanthine showed good occupancy in PDE9A active site pocket with a significant interaction pattern. This was further validated by screening different factors such as free energy of binding, inhibition constant and interacting active site residues in the 5Å region. Substitution at C8 position with phenyl substituent determined the inhibition affinity of compounds towards PDE9A by establishing a strong hydrophobic - hydrophobic interaction. The alkyl chain at N1 position generated selectivity of compounds towards PDE9A. The aromatic fragment at N3 position increased the binding affinity of compounds. Thus, by comparative docking study, it was found that compound 39-42 formed selective interaction towards PDE9A over other members of the PDE superfamily. Conclusion: From the present study, N1, N3 and C8 positions of xanthine were concluded as the best sites for substitution for the generation of potent PDE9A inhibitors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Charles Bou-Nader ◽  
Frederick W. Stull ◽  
Ludovic Pecqueur ◽  
Philippe Simon ◽  
Vincent Guérineau ◽  
...  

AbstractFolate enzyme cofactors and their derivatives have the unique ability to provide a single carbon unit at different oxidation levels for the de novo synthesis of amino-acids, purines, or thymidylate, an essential DNA nucleotide. How these cofactors mediate methylene transfer is not fully settled yet, particularly with regard to how the methylene is transferred to the methylene acceptor. Here, we uncovered that the bacterial thymidylate synthase ThyX, which relies on both folate and flavin for activity, can also use a formaldehyde-shunt to directly synthesize thymidylate. Combining biochemical, spectroscopic and anaerobic crystallographic analyses, we showed that formaldehyde reacts with the reduced flavin coenzyme to form a carbinolamine intermediate used by ThyX for dUMP methylation. The crystallographic structure of this intermediate reveals how ThyX activates formaldehyde and uses it, with the assistance of active site residues, to methylate dUMP. Our results reveal that carbinolamine species promote methylene transfer and suggest that the use of a CH2O-shunt may be relevant in several other important folate-dependent reactions.


Sign in / Sign up

Export Citation Format

Share Document