scholarly journals Solid-State NMR and NQR Spectroscopy of Lead-Halide Perovskite Materials

2020 ◽  
Vol 142 (46) ◽  
pp. 19413-19437
Author(s):  
Laura Piveteau ◽  
Viktoriia Morad ◽  
Maksym V. Kovalenko
2021 ◽  
pp. 2100854
Author(s):  
Lili Wang ◽  
Jason J. Yoo ◽  
Ting‐An Lin ◽  
Collin F. Perkinson ◽  
Yongli Lu ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 667 ◽  
Author(s):  
Edson Meyer ◽  
Dorcas Mutukwa ◽  
Nyengerai Zingwe ◽  
Raymond Taziwa

Perovskite solar cells employ lead halide perovskite materials as light absorbers. These perovskite materials have shown exceptional optoelectronic properties, making perovskite solar cells a fast-growing solar technology. Perovskite solar cells have achieved a record efficiency of over 20%, which has superseded the efficiency of Gräztel dye-sensitized solar cell (DSSC) technology. Even with their exceptional optical and electric properties, lead halide perovskites suffer from poor stability. They degrade when exposed to moisture, heat, and UV radiation, which has hindered their commercialization. Moreover, halide perovskite materials consist of lead, which is toxic. Thus, exposure to these materials leads to detrimental effects on human health. Halide double perovskites with A2B′B″X6 (A = Cs, MA; B′ = Bi, Sb; B″ = Cu, Ag, and X = Cl, Br, I) have been investigated as potential replacements of lead halide perovskites. This work focuses on providing a detailed review of the structural, optical, and stability properties of these proposed perovskites as well as their viability to replace lead halide perovskites. The triumphs and challenges of the proposed lead-free A2B′B″X6 double perovskites are discussed here in detail.


2017 ◽  
Vol 121 (47) ◽  
pp. 26180-26187 ◽  
Author(s):  
Meysam Pazoki ◽  
T. Jesper Jacobsson ◽  
Silver H. T. Cruz ◽  
Malin B. Johansson ◽  
Roghayeh Imani ◽  
...  

Author(s):  
Hsinhan Tsai ◽  
Jeremy Tisdale ◽  
Shreetu Shrestha ◽  
Fangze Liu ◽  
Wanyi Nie

2016 ◽  
Vol 113 (8) ◽  
pp. 1993-1998 ◽  
Author(s):  
Samuel W. Eaton ◽  
Minliang Lai ◽  
Natalie A. Gibson ◽  
Andrew B. Wong ◽  
Letian Dou ◽  
...  

The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication.


2020 ◽  
Vol 8 (26) ◽  
pp. 8917-8934 ◽  
Author(s):  
Joydip Ghosh ◽  
Larionette P. L. Mawlong ◽  
Manasa G. B. ◽  
Alexander J. Pattison ◽  
Wolfgang Theis ◽  
...  

Color tunable cesium lead halide perovskite nanocrystals with high stability and the mechanism of high-performance photodetection in a monolayer MoS2/CsPbBr3 vertical heterojunction.


Sign in / Sign up

Export Citation Format

Share Document