Patchy Colloidal Clusters with Broken Symmetry

Author(s):  
You-Jin Kim ◽  
Jae-Hyun Kim ◽  
In-Seong Jo ◽  
David J. Pine ◽  
Stefano Sacanna ◽  
...  
1983 ◽  
Vol 140 (7) ◽  
pp. 429 ◽  
Author(s):  
Evgenii A. Turov ◽  
Vladimir G. Shavrov
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
L. Alvarez ◽  
M. A. Fernandez-Rodriguez ◽  
A. Alegria ◽  
S. Arrese-Igor ◽  
K. Zhao ◽  
...  

AbstractSelf-propelling microparticles are often proposed as synthetic models for biological microswimmers, yet they lack the internally regulated adaptation of their biological counterparts. Conversely, adaptation can be encoded in larger-scale soft-robotic devices but remains elusive to transfer to the colloidal scale. Here, we create responsive microswimmers, powered by electro-hydrodynamic flows, which can adapt their motility via internal reconfiguration. Using sequential capillary assembly, we fabricate deterministic colloidal clusters comprising soft thermo-responsive microgels and light-absorbing particles. Light absorption induces preferential local heating and triggers the volume phase transition of the microgels, leading to an adaptation of the clusters’ motility, which is orthogonal to their propulsion scheme. We rationalize this response via the coupling between self-propulsion and variations of particle shape and dielectric properties upon heating. Harnessing such coupling allows for strategies to achieve local dynamical control with simple illumination patterns, revealing exciting opportunities for developing tactic active materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sungmin Kim ◽  
Johannes Schwenk ◽  
Daniel Walkup ◽  
Yihang Zeng ◽  
Fereshte Ghahari ◽  
...  

AbstractThe quantum Hall (QH) effect, a topologically non-trivial quantum phase, expanded the concept of topological order in physics bringing into focus the intimate relation between the “bulk” topology and the edge states. The QH effect in graphene is distinguished by its four-fold degenerate zero energy Landau level (zLL), where the symmetry is broken by electron interactions on top of lattice-scale potentials. However, the broken-symmetry edge states have eluded spatial measurements. In this article, we spatially map the quantum Hall broken-symmetry edge states comprising the graphene zLL at integer filling factors of $${{\nu }}={{0}},\pm {{1}}$$ ν = 0 , ± 1 across the quantum Hall edge boundary using high-resolution atomic force microscopy (AFM) and show a gapped ground state proceeding from the bulk through to the QH edge boundary. Measurements of the chemical potential resolve the energies of the four-fold degenerate zLL as a function of magnetic field and show the interplay of the moiré superlattice potential of the graphene/boron nitride system and spin/valley symmetry-breaking effects in large magnetic fields.


2015 ◽  
Vol 115 (5) ◽  
Author(s):  
L. E. Perotti ◽  
J. Rudnick ◽  
R. F. Bruinsma ◽  
W. S. Klug

2013 ◽  
Vol 34 (20) ◽  
pp. 1629-1634 ◽  
Author(s):  
Ran Yu ◽  
Jürgen Hartmann ◽  
Klaus Tauer

Sign in / Sign up

Export Citation Format

Share Document