Mechanistic and Electronic Insights into a Working NiAu Single-Atom Alloy Ethanol Dehydrogenation Catalyst

Author(s):  
Georgios Giannakakis ◽  
Paul Kress ◽  
Kaining Duanmu ◽  
Hio Tong Ngan ◽  
George Yan ◽  
...  
2020 ◽  
Vol 124 (44) ◽  
pp. 24271-24278
Author(s):  
Mark Muir ◽  
David L. Molina ◽  
Arephin Islam ◽  
Mohammed K. Abdel-Rahman ◽  
Michael Trenary

2018 ◽  
Vol 10 (10) ◽  
pp. 1008-1015 ◽  
Author(s):  
M. T. Greiner ◽  
T. E. Jones ◽  
S. Beeg ◽  
L. Zwiener ◽  
M. Scherzer ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xi Zhang ◽  
Guoqing Cui ◽  
Haisong Feng ◽  
Lifang Chen ◽  
Hui Wang ◽  
...  

AbstractSelective hydrogenolysis of biomass-derived glycerol to propanediol is an important reaction to produce high value-added chemicals but remains a big challenge. Herein we report a PtCu single atom alloy (SAA) catalyst with single Pt atom dispersed on Cu nanoclusters, which exhibits dramatically boosted catalytic performance (yield: 98.8%) towards glycerol hydrogenolysis to 1,2-propanediol. Remarkably, the turnover frequency reaches up to 2.6 × 103 molglycerol·molPtCu–SAA−1·h−1, which is to our knowledge the largest value among reported heterogeneous metal catalysts. Both in situ experimental studies and theoretical calculations verify interface sites of PtCu–SAA serve as intrinsic active sites, in which the single Pt atom facilitates the breakage of central C–H bond whilst the terminal C–O bond undergoes dissociation adsorption on adjacent Cu atom. This interfacial synergistic catalysis based on PtCu–SAA changes the reaction pathway with a decreased activation energy, which can be extended to other noble metal alloy systems.


ACS Catalysis ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 3431-3443 ◽  
Author(s):  
Yueqiang Cao ◽  
Jonathan Guerrero-Sańchez ◽  
Ilkeun Lee ◽  
Xinggui Zhou ◽  
Noboru Takeuchi ◽  
...  

2020 ◽  
Vol 10 (17) ◽  
pp. 5815-5828 ◽  
Author(s):  
Konstantinos G. Papanikolaou ◽  
Michail Stamatakis

Typically structure sensitive dissociation reactions exhibit reduced structure-sensitivity when taking place over low-index single atom alloy surfaces.


RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 62-71
Author(s):  
Qing Liu ◽  
Xiaoxu Wang ◽  
Lu Li ◽  
Keke Song ◽  
Yanzhou Wang ◽  
...  

Catalytic properties and structure evolution of a PdCu nanoalloy with a novel crown-jewel structure are explored using DFT calculations and MD simulations.


2021 ◽  
Author(s):  
Guokui Zheng ◽  
Ziqi Tian ◽  
Xingwang Zhang ◽  
Liang Chen ◽  
Xu Qian ◽  
...  

<p></p><p>Exploring electrocatalyst with high activity, selectivity and stability is essential for development of applicable electrocatalytic ammonia synthesis technology. By performing density functional theory calculations, we systematically investigated a series of transition-metal doped Au-based single atom alloys (SAAs) as promising electrocatalysts for nitrogen reduction reaction (NRR). For Au-based electrocatalyst, the first hydrogenation step (*N<sub>2</sub>→*NNH) normally determines the limiting potential of the overall reaction process. Compared with pristine Au(111) surface, introducing single atom can significantly enhance the binding strength of N<sub>2</sub>, leading to decreased energy barrier of the key step, i.e., ΔG(*N<sub>2</sub>→*NNH). According to simulation results, three descriptors were proposed to describe ΔG(*N<sub>2</sub>→*NNH), including ΔG(*NNH), <i>d</i>-band center, and . Eight doped elements (Ti, V, Nb, Ru, Ta, Os, W, and Mo) were initially screened out with limiting potential ranging from -0.75V to -0.30 V. Particularly, Mo- and W-doped systems possess the best activity with limiting potentials of -0.30 V, respectively. Then the intrinsic relationship between structure and the potential performance was further analyzed by using machine-learning. The selectivity, feasibility, stability of these candidates were also evaluated, confirming that SAA containing Mo, Ru ,Ta, and W could be outstanding NRR electrocatalysts. This work not only broadens the understating of SAA application in electrocatalysis, but also devotes to the discovery of novel NRR electrocatalysts.</p><br><p></p>


Sign in / Sign up

Export Citation Format

Share Document