Thermal Decomposition of Sodium Carbonate Solutions.

1963 ◽  
Vol 8 (1) ◽  
pp. 51-54 ◽  
Author(s):  
Authur M. Thomas
1992 ◽  
Vol 57 (11) ◽  
pp. 2302-2308
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Emerich Erdös

The kinetics of the reaction of solid sodium carbonate with sulfur dioxide depends on the microstructure of the solid, which in turn is affected by the way and conditions of its preparation. The active form, analogous to that obtained by thermal decomposition of NaHCO3, emerges from the dehydration of Na2CO3 . 10 H2O in a vacuum or its weathering in air at room temperature. The two active forms are porous and have approximately the same specific surface area. Partial hydration of the active Na2CO3 in air at room temperature followed by thermal dehydration does not bring about a significant decrease in reactivity. On the other hand, if the preparation of anhydrous Na2CO3 involves, partly or completely, the liquid phase, the reactivity of the product is substantially lower.


1934 ◽  
Vol 11 (4) ◽  
pp. 539-546
Author(s):  
J. W. Shipley

The a.-c. electrolysis of sodium carbonate solutions at voltages as high as 110, even when arcing occurs on the electrodes, does not cause the evolution of carbon dioxide. In the a.-c. electrolysis of aqueous bicarbonate solutions with platinum electrodes, hydrogen, oxygen and carbon dioxide are evolved freely until all the bicarbonate has been transformed to carbonate, after which the evolution of carbon dioxide ceases and only hydrogen and oxygen are given off. In a.-c. electrolysis of sodium bicarbonate solutions and solutions of the sodium salts of aliphatic acids, a deposit of finely divided platinum is formed on the electrodes. This deposit inhibits the evolution of carbon dioxide, hydrogen and oxygen, but does not affect the current flow. The decomposition potential of bicarbonate solutions in respect to the evolution of carbon dioxide on smooth platinum and with d.c. was found to be 2.2 volts, and of carbonate solutions, 3.5 volts. The anodic discharge potential of HCO3− is − 1.45 to − 1.50 volts, and of CO3−−, − 1.90 to − 1.95 volts. The evolution of carbon dioxide does not appear to cause any polarizing effect on the anode.


2004 ◽  
Vol 49 (15) ◽  
pp. 2415-2424 ◽  
Author(s):  
Mohammed A Amin ◽  
Sayed S Abdel Rehim

1992 ◽  
Vol 40 (11) ◽  
pp. 2147-2151 ◽  
Author(s):  
H. Locksley. Trenholm ◽  
Lynne L. Charmley ◽  
Dan B. Prelusky ◽  
Robert M. Warner

Sign in / Sign up

Export Citation Format

Share Document