Increased DNA Binding Specificity for Antitumor Ecteinascidin 743 through Protein−DNA Interactions?

2000 ◽  
Vol 43 (23) ◽  
pp. 4367-4369 ◽  
Author(s):  
Raquel García-Nieto ◽  
Ignacio Manzanares ◽  
Carmen Cuevas ◽  
Federico Gago
2020 ◽  
Vol 48 (11) ◽  
pp. 6382-6402
Author(s):  
April L Mueller ◽  
Carles Corbi-Verge ◽  
David O Giganti ◽  
David M Ichikawa ◽  
Jeffrey M Spencer ◽  
...  

Abstract The Cys2His2 zinc finger is the most common DNA-binding domain expanding in metazoans since the fungi human split. A proposed catalyst for this expansion is an arms race to silence transposable elements yet it remains poorly understood how this domain is able to evolve the required specificities. Likewise, models of its DNA binding specificity remain error prone due to a lack of understanding of how adjacent fingers influence each other's binding specificity. Here, we use a synthetic approach to exhaustively investigate binding geometry, one of the dominant influences on adjacent finger function. By screening over 28 billion protein–DNA interactions in various geometric contexts we find the plasticity of the most common natural geometry enables more functional amino acid combinations across all targets. Further, residues that define this geometry are enriched in genomes where zinc fingers are prevalent and specificity transitions would be limited in alternative geometries. Finally, these results demonstrate an exhaustive synthetic screen can produce an accurate model of domain function while providing mechanistic insight that may have assisted in the domains expansion.


2021 ◽  
Author(s):  
Yizhao Luan ◽  
Zhi Xie

Transcription factors (TFs) regulate gene expression by specifically binding to DNA targets. Many factors have been revealed to influence TF-DNA binding specificity. Coevolution of residues in proteins occurs due to a common evolutionary history. However, it is unclear how coevolving residues in TFs contribute to DNA binding specificity. Here, we systematically analyzed TF-DNA interactions from high-throughput experiments for seven TF families, including Homeobox, HLH, bZIP_1, Ets, HMG_box, zf-C4 and Zn_clus TFs. Based on TF-DNA interactions, we detected TF subclass determining sites (TSDSs) defining the heterogeneity of DNA binding preference for each TF family. We showed that the TSDSs were more likely to be coevolving with TSDSs than with non-TSDSs, particularly for Homeobox, HLH, Ets, bZIP_1 and HMG_box TF families. Mutation of the highly coevolving residues could significantly reduce the stability of TF-DNA complex. The distant residues from the DNA interface also contributed to TF-DNA binding activity. Overall, our study gave evidence of the functional importance of coevolved residues in refining transcriptional regulation and provided clues to the application of engineered DNA-binding domains and protein.


Sign in / Sign up

Export Citation Format

Share Document