Conversion and Origin of Normal and Abnormal Temperature Dependences of Kinetic Isotope Effect in Hydride Transfer Reactions

2012 ◽  
Vol 77 (10) ◽  
pp. 4774-4783 ◽  
Author(s):  
Xiao-Qing Zhu ◽  
Xiu-Tao Li ◽  
Su-Hui Han ◽  
Lian-Rui Mei





1985 ◽  
Vol 63 (8) ◽  
pp. 2237-2240 ◽  
Author(s):  
Allan K. Colter ◽  
A. Gregg Parsons ◽  
Karen Foohey

The kinetics of oxidation of 10-methyl-9-phenylacridan (1(H)) and 9-deuterio-10-methyl-9-phenylacridan (1(D)) to 10-methyl-9-phenylacridinium ion (3) by eight oxidants have been investigated. The oxidants included the π-acceptors 1,4-benzoquinone (BQ), 7,7,8,8-tetracyanoquinodimethane (TCNQ), p-bromanil (BA), p-chloranil (CA), tetracyanoethylene (TCNE), 2,3-dicyano-1,4-benzoquinone (DCBQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in acetonitrile (AN), BQ in 50:50 (v/v) AN-water, and the one-electron oxidant tris(2,2′-bipyridyl)cobalt(III), [Formula: see text] in AN. The seven π acceptors cover a 109-fold range of reactivity from BQ to DDQ and the deuterium kinetic isotope effect varies from 11.9 (BQ in AN) to 5.8 (DDQ). For π acceptors (BQ, TCNQ, CA, TCNE, and DCBQ) previously investigated with 10-methylacridan (NMA), 1(H) is less reactive than NMA by factors ranging from 9.1 (BQ) to 1.7 × 102 (TCNE). The isotope effects and relative reactivities for the π acceptor oxidations are most simply explained by a one-step hydride transfer mechanism.



1979 ◽  
Vol 101 (8) ◽  
pp. 2242-2243 ◽  
Author(s):  
Keith M. Wellman ◽  
Maria E. Victoriano ◽  
Paulo C. Isolani ◽  
Jose M. Riveros


1979 ◽  
Vol 10 (32) ◽  
Author(s):  
K. M. WELLMAN ◽  
M. E. VICTORIANO ◽  
P. C. ISOLANI ◽  
J. M. RIVEROS


Sign in / Sign up

Export Citation Format

Share Document