Imidazolium Hydrogen Carbonates versus Imidazolium Carboxylates as Organic Precatalysts for N-Heterocyclic Carbene Catalyzed Reactions

2012 ◽  
Vol 77 (22) ◽  
pp. 10135-10144 ◽  
Author(s):  
Maréva Fèvre ◽  
Paul Coupillaud ◽  
Karinne Miqueu ◽  
Jean-Marc Sotiropoulos ◽  
Joan Vignolle ◽  
...  
2018 ◽  
Author(s):  
Justin Eilertsen ◽  
Santiago Schnell

<div>As a case study, we consider a coupled enzyme assay of sequential enzyme reactions obeying the Michaelis--Menten reaction mechanism. The sequential reaction consists of a single-substrate, single-enzyme non-observable reaction followed by another single-substrate, single-enzyme observable reaction (indicator reaction). In this assay, the product of the non-observable reaction becomes the substrate of the indicator reaction. A mathematical analysis of the reaction kinetics is performed, and it is found that after an initial fast transient, the sequential reaction is described by a pair of interacting Michaelis--Menten equations. Timescales that approximate the respective lengths of the indicator and non-observable reactions, as well as conditions for the validity of the Michaelis--Menten equations are derived. The theory can be extended to deal with more complex sequences of enzyme catalyzed reactions.</div>


2018 ◽  
Author(s):  
Justin Eilertsen ◽  
Santiago Schnell

<div>As a case study, we consider a coupled enzyme assay of sequential enzyme reactions obeying the Michaelis-Menten reaction mechanism. The sequential reaction consists of a single-substrate, single enzyme non-observable reaction followed by another single-substrate, single enzyme observable reaction (indicator reaction). In this assay, the product of the non-observable reaction becomes the substrate of the indicator reaction. A mathematical analysis of the reaction kinetics is performed, and it is found that after an initial fast transient, the sequential reaction is described by a pair of interacting Michaelis-Menten equations. Timescales that approximate the respective lengths of the indicator and non-observable reactions, as well as conditions for the validity of the Michaelis-Menten equations are derived. The theory can be extended to deal with more complex sequences of enzyme catalyzed reactions.</div>


2018 ◽  
Author(s):  
Timothy Newhouse ◽  
Daria E. Kim ◽  
Joshua E. Zweig

The diverse molecular architectures of terpene natural products are assembled by exquisite enzyme-catalyzed reactions. Successful recapitulation of these transformations using chemical synthesis is hard to predict from first principles and therefore challenging to execute. A means of evaluating the feasibility of such chemical reactions would greatly enable the development of concise syntheses of complex small molecules. Herein, we report the computational analysis of the energetic favorability of a key bio-inspired transformation, which we use to inform our synthetic strategy. This approach was applied to synthesize two constituents of the historically challenging indole diterpenoid class, resulting in a concise route to (–)-paspaline A in 9 steps from commercially available materials and the first pathway to and structural confirmation of emindole PB in 13 steps. This work highlights how traditional retrosynthetic design can be augmented with quantum chemical calculations to reveal energetically feasible synthetic disconnections, minimizing time-consuming and expensive empirical evaluation.


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2021 ◽  
Vol 17 ◽  
Author(s):  
Austin Pounder ◽  
Angel Ho ◽  
Matthew Macleod ◽  
William Tam

: Oxabenzonorbornadiene (OBD) is a useful synthetic intermediate which can be readily activated by transition metal complexes with great face selectivity due to its dual-faced nature and intrinsic angle strain on the alkene. To date, the understanding of transition-metal catalyzed reactions of OBD itself has burgeoned; however, this has not been the case for unsymmetrical OBDs. Throughout the development of these reactions, the nature of C1-substituent has proven to have a profound effect on both the reactivity and selectivity of the outcome of the reaction. Upon substitution, different modes of reactivity arise, contributing to the possibility of multiple stereo-, regio-, and in extreme cases, constitutional isomers which can provide unique means of constructing a variety of synthetically useful cyclic frameworks. To maximize selectivity, an understanding of bridgehead substituent effects is crucial. To that end, this review outlines hitherto reported examples of bridgehead substituent effects on the chemistry of unsymmetrical C1-substituted OBDs.


1982 ◽  
Vol 47 (12) ◽  
pp. 3348-3361 ◽  
Author(s):  
Erich Lippert ◽  
Karel Mocek ◽  
Emerich Erdös

The reactivity of the anhydrous carbonates of alkaline metals with sulphur dioxide has been studied experimentally in dependence both on the nature of the cation and on the way of preparation of the anhydrous carbonate. The carbonates were prepared either by thermal decomposition of hydrogen carbonates or by thermal dehydration of carbonate hydrates. The carbonates of lithium, sodium, potassium, rubidium and caesium have been investigated. Kinetic measurements were carried out in a flow reactor in the integral regime at 423 K under atmospheric pressure, with a gas containing 0.2 vol.% of sulphur dioxide and 2.0 vol.% of water vapour in the nitrogen as a carrier gas. The reactivities have been compared on the basis of time dependence of the conversion of carbonate to sulphite.


Sign in / Sign up

Export Citation Format

Share Document