Gas-Phase Reactions of Chlorine Atoms and ClO Radicals with Dimethyl Sulfide. Rate Coefficients and Temperature Dependences

2002 ◽  
Vol 106 (37) ◽  
pp. 8627-8633 ◽  
Author(s):  
Y. Díaz-de-Mera ◽  
A. Aranda ◽  
D. Rodríguez ◽  
R. López ◽  
B. Cabañas ◽  
...  
2020 ◽  
Author(s):  
Max R. McGillen ◽  
William P.L. Carter ◽  
Abdelwahid Mellouki ◽  
John J. Orlando ◽  
Bénédicte Picquet-Varrault ◽  
...  

Abstract. We present a digital, freely available, searchable and evaluated compilation of rate coefficients for the gas-phase reactions of organic compounds with OH, Cl and NO3 radicals and with O3 (McGillen et al., 2019). Although other compilations of much of these data exist, many are out-of-date, most have limited scope, and all are difficult to search and to load completely into a digitized form. This compilation uses results of previous reviews, though many recommendations are updated to incorporate new or omitted data or address errors, and includes recommendations on many reactions that have not been reviewed previously. The database, which incorporates over 50 years of measurements, consists of a total of 2765 recommended bimolecular rate coefficients for the reactions of 1357 organic substances with OH, 709 with Cl, 310 with O3, and 389 with NO3, and is much larger than previous compilations. A large variety of functional groups is present in this database, including naturally occurring chemicals formed in or emitted to the atmosphere and anthropogenic compounds such as halocarbons and their degradation products. Recommendations were made for rate coefficients at 298 K and, where possible, the temperature dependences over the entire range of the available data. The primary motivation behind this project has been to provide a large and thoroughly evaluated training dataset for the development of structure-activity relationships (SARs), whose reliability depends fundamentally upon the availability of high-quality experimental data. However, there are other potential applications of this work, such as research related to atmospheric lifetimes and fates of organic compounds, or modelling gas-phase reactions of organics in various environments. This database is freely accessible at https://doi.org/10.25326/36 (McGillen et al., 2019).


2020 ◽  
Vol 12 (2) ◽  
pp. 1203-1216 ◽  
Author(s):  
Max R. McGillen ◽  
William P. L. Carter ◽  
Abdelwahid Mellouki ◽  
John J. Orlando ◽  
Bénédicte Picquet-Varrault ◽  
...  

Abstract. We present a digital, freely available, searchable, and evaluated compilation of rate coefficients for the gas-phase reactions of organic compounds with OH, Cl, and NO3 radicals and with O3. Although other compilations of many of these data exist, many are out of date, most have limited scope, and all are difficult to search and to load completely into a digitized form. This compilation uses results of previous reviews, though many recommendations are updated to incorporate new or omitted data or address errors, and includes recommendations on many reactions that have not been reviewed previously. The database, which incorporates over 50 years of measurements, consists of a total of 2765 recommended bimolecular rate coefficients for the reactions of 1357 organic substances with OH, 709 with Cl, 310 with O3, and 389 with NO3, and is much larger than previous compilations. Many compound types are present in this database, including naturally occurring chemicals formed in or emitted to the atmosphere and anthropogenic compounds such as halocarbons and their degradation products. Recommendations are made for rate coefficients at 298 K and, where possible, the temperature dependences over the entire range of the available data. The primary motivation behind this project has been to provide a large and thoroughly evaluated training dataset for the development of structure–activity relationships (SARs), whose reliability depends fundamentally upon the availability of high-quality experimental data. However, there are other potential applications of this work, such as research related to atmospheric lifetimes and fates of organic compounds, or modelling gas-phase reactions of organics in various environments. This database is freely accessible at https://doi.org/10.25326/36 (McGillen et al., 2019).


2013 ◽  
Vol 45 (5) ◽  
pp. 295-305 ◽  
Author(s):  
H. D. Alwe ◽  
M. Walawalkar ◽  
A. Sharma ◽  
K. K. Pushpa ◽  
S. Dhanya ◽  
...  

2011 ◽  
Vol 7 (S280) ◽  
pp. 361-371 ◽  
Author(s):  
Ian W. M. Smith

AbstractInformation about the rate coefficients and products of processes that occur in the interstellar medium are required as input to computer models that seek to reproduce the abundances of the rich variety of molecules that have been observed in different regions of the interstellar medium. In this brief review, I seek to identify the different kinds of gas-phase processes for which information is required and to consider the experimental, theoretical, and semi-empirical methods which are employed to measure or predict rate coefficients, k(T), and how they depend on temperature (T) – and also how the products of reactions can, in favourable cases, be observed.


2017 ◽  
Author(s):  
Siripina Vijayakumar ◽  
Avinash Kumar ◽  
Balla Rajakuma

Abstract. Temperature dependent rate coefficients for the gas phase reactions of Cl atoms with 4-hexen-3-one and 5-hexen-2-one were measured over the temperature range of 298–363 K relative to 1-pentene, 1,3-butadiene and isoprene. Gas Chromatography (GC) was used to measure the concentrations of the organics. The derived temperature dependent Arrhenius expressions are k4-hexen-3-one+Cl (298–363 K) = (2.82 ± 1.76)×10−12exp [(1556 ± 438)/T] cm3 molecule−1 s−1 and k5-hexen-2-one+Cl (298–363 K) = (4.6 ± 2.4)×10−11exp[(646 ± 171)/T] cm3 molecule−1 s−1. The corresponding room temperature rate coefficients are (5.54 ± 0.41)×10−10 cm3 molecule−1 s−1 and (4.00 ± 0.37)×10−10 cm3 molecule−1 s−1 for the reactions of Cl atoms with 4-hexen-3-one and 5-hexen-2-one respectively. To understand the mechanism of Cl atom reactions with unsaturated ketones, computational calculations were performed for the reactions of Cl atoms with 4-hexen-3-one, 5-hexen-2-one and 3-penten-2-one over the temperature range of 275–400 K using Canonical Variational Transition state theory (CVT) with Small Curvature Tunneling (SCT) in combination with CCSD(T)/6-31+G(d, p)//MP2/6-311++G(d, p) level of theory. Atmospheric implications, reaction mechanism and feasibility of the title reactions are discussed in this manuscript.


2014 ◽  
Vol 118 (20) ◽  
pp. 3535-3540 ◽  
Author(s):  
Matthieu Riva ◽  
Robert M. Healy ◽  
Pierre-Marie Flaud ◽  
Emilie Perraudin ◽  
John C. Wenger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document